На правах рукописи

ГОФФМАН ВЛАДИМИР ГЕОРГИЕВИЧ

ТРАНСПОРТНЫЕ ПРОЦЕССЫ И ГЕТЕРОПЕРЕХОДЫ

В ТВЕРДОФАЗНЫХ ЭЛЕКТРОХИМИЧЕСКИХ СИСТЕМАХ

С БЫСТРЫМ ИОННЫМ ПЕРЕНОСОМ

Автореферат

диссертации на соискание ученой степени

доктора химических наук

2000


Актуальность темы диссертации

Суперионные проводники - это твердые тела, обладающие свойством быстрого ионного переноса, для которых характерна высокая ионная проводимость достигающая значений 0.1...100 См/м. Соответственно коэффициенты диффузии подвижных ионов составляют 10»12...10'8 м2/с. Следует отметить две фундаментальные особенности суперионных проводников, отличающих их от жидких электролитов. Во-первых - перенос заряда осуществляется только одним сортом ионов, все остальные ионы формируют жесткий каркас кристаллической решетки, и их перенос может осуществляться по механизмам точечных дефектов. Во-вторых, суперионные проводники одновременно являются электронными полупроводниками с широкой запрещенной зоной и наличием электронных типов носителей заряда: дырок и электронов. Концентрация последних зависит от наличия местных донорных и акцепторных уровней. Из этого следует, что явление переноса как в объеме суперионного проводника, так и тем более на гетеропереходах в контакте с электролитами зависят от поведения электронных и ионных подсистем и их взаимного влияния. Исследования стационарных и переходных электрохимических процессов в конкретных системах с использованием поликристаллических материалов активно ведутся во всех промышленно развитых странах с целью установления основополагающих закономерностей бурно развивающейся новой отрасли науки - ионики твердого тела, и использования последних в создании преобразователей энергии и информации нового поколения.

Однако до настоящего времени нет работ электрохимического плана, выполненных на монокристаллах. Их отсутствие не позволяет скорректировать отличающиеся на порядки удельные характеристики, полученные исследователями на порошкообразных образцах, и отдать предпочтение наиболее реальным моделям и механизмам, объясняющим явления возникновения суперионного эффекта и функционирования электрохимических систем на их основе.

Поэтому научная работа, в которой поставлены задачи получения монокристаллов в системах на основе AgJ и определения ряда фундаментальных параметров, и их взаимного влияния на транспортные свойства и контактные явления, протекающие на границе с электродами различной природы, является своевременной и важной. Настоящая работа выполнена в лаборатории твердых электролитов ИНХП АН СССР (Черноголовка) и лаборатории «Ионика твердого тела» СГТУ (г. Саратов).

Работы велись в соответствии с координационными планами научных советов РАН «Физическая химия ионных расплавов и твердых электролитов», «Электрохимия и коррозия», а также на хоздоговорной основе в соответствии с тематическими планами производственных объединений «Позитрон» (Минэлектронпром), «Маяк» (Минэлектротехпром), «Сигнал» МАП, Института Общей физики АН СССР и по договорам о творческом сотрудничестве с институтами ФТИ им. А.Ф. Иоффе АН, МГУ, Латвийским университетом.

Цель работы заключается в установлении фундаментальных закономерностей транспортных свойств в твердофазных электрохимических системах, включающих суперионные монокристаллы с униполярной проводимостью по ионам серебра.

Поставленная цель достигается решением следующих задач:

• Поиск и исследование систем с целью разработки технологии получения чистых и совершенных монокристаллов на основе AgJ.

• Экспериментальные, исследования термодинамических, электрохимических, оптических свойств.

• Экспериментальные и теоретические исследования особенностей кинетики переноса основных и не основных носителей заряда.

• Экспериментальные и теоретические исследования кинетики аддитивного окрашивания суперионных монокристаллов в парах иода.

Экспериментальное и теоретическое исследование гетеропереходов с чистыми и легированными суперионными проводниками.

Научная новизна и основные защищаемые положения

Впервые поставлена и решена проблема комплексного анализа структурных, оптических, термодинамических, электрохимических свойств суперионных проводников в монокристаллическом состоянии и процессов, протекающих с их участием на гетеропереходах. При этом получены следующие новые научные результаты:

Исследована система MJ-AgJ-CH3COCH3, и на основании полученных результатов разработан оригинальный метод выращивания монокристаллов суперионных проводников Ag4RbJ5, Ag+KJs, AgJ высокой чистоты.

Проведены исследования фазовых переходов. Экспериментально доказано, что фазовый переход в Ag4RbJs при 208К относится к переходам 5 первого рода. Исследована доменная структура, возникающая при температуре ниже 208 К. Показано, что размер доменов фазе определяется температурой и не носит релаксационного характера. Обнаружено, что при фазовом переходе 122К скрытая теплота выделяется в два этапа.

Обнаружен и исследован эффект аддитивного окрашивания монокристаллов AgiRbJs в парах йода. Предложена и экспериментально доказана модель образования центров окраски при нормальных условиях.

Проведены исследования диффузии центров окраски в Ag4RbJ5. Обнаружено влияние аддитивного окрашивания на электронную проводимость.

Проведены исследования процессов диффузии меченых атомов (Ag и J) на монокристаллах AgtRbJs. Получены температурные зависимости коэффициентов диффузии.

Проведены исследования электрохимических закономерностей на гетеропереходах с монокристаллическим суперионным проводником Ag4RbJ5. Обнаружено, что параметры гетероперехода, описывающие кинетику не основных носителей, зависят от кристаллографического направления.

Проведено исследование методом потенциодинамической вольтамперометрии и импеданса монокристалла на границе с обратимыми, инертными и необратимыми электродами. Предложены эквивалентные схемы, удовлетворительно описывающие электрохимическое поведение процессов на гетеропереходах. Рассчитаны энергии активации отдельных стадий электрохимических процессов.

Установлена взаимосвязь структуры, оптических свойств с электрохимическими. Обнаружено влияние дефектности структуры на ионную и электронную составляющие проводимости в диапазоне ОС. температур и концентраций.

Положения работы, выносимые на защиту.

Проведенные экспериментальные и теоретические исследования позволяют вынести на защиту следующие основные научные положения и результаты.

Исследования системы MJ-AgJ-СНзСОСНз и способ получения монокристаллов А&ДЫ5, Ag4KJ5, AgJ.

Термодинамические и оптические характеристики фазовых переходов.

Модель образования центров окраски при воздействии иода на монокристаллы суперионика. Экспериментальное подтверждение предложенной модели. Кинетические характеристики центров окраски и их влияние на проводимость.

Экспериментальные результаты определения параметров гетеропереходов с йодом и йодными комплексами. Установленные закономерности кинетики и механизма электродных процессов, протекающие на гетеропереходах с участием основных носителей заряда.

Экспериментальные результаты определения энергии активации ионной и электронной составляющих проводимости монокристаллов.

Экспериментальные исследования процессов диффузии серебра-ПО, иода-131, центров окраски.

Взаимосвязь между структурными, оптическимии электрохимическими свойствами монокристаллов.

Практическая ценность работы заключается:

В разработке метода и технологии выращивания совершенных, высокой чистоты монокристаллов Ag4RbJ5, Ag4KJ5 из системы MJ-AgJ-СН3СОСН3. Разработанный метод позволяет получать образцы для проведения прецизионных измерений электрических, термодинамических, оптических и других характеристик и материалы высокого качества для изготовления твердотельных функциональных элементов электронной техники. Разработан «метод выращивания монокристаллов AgJ.

В проведении комплекса экспериментальных исследований термодинамических характеристик, характеристик, описывающих кинетику основных и не основных носителей заряда в суперионных кристаллах. Полученные результаты являются справочными и могут быть использованы при определении оптимальных критериев для конструирования преобразователей энергии и информации.

В разработке сенсора для определения концентрации йода в условиях 100% влажности и высокого радиационного поля.

В разработке технологии изготовления сверхъемких конденсаторов, позволившей получить следующие основные характеристики: 1) емкость до 100 Ф; 2) количество циклов заряд-разряд > 150000; 3) ток саморазряда при 398 К < 10 нА, при 298 К < 10 пА.

В разработке количественного метода определения AgJ в составах MJ-AgJ, который может быть использован для контроля соединений на основе AgJ.

В разработке алгоритмов и методов определения параметров сложных электрохимических эквивалентных схем.


Апробация работы

Материалы диссертационной работы докладывались на V Всесоюзном совещании по росту кристаллов, на VI, VII, VIII и XI Всесоюзных конференциях по физической химии ионных расплавов и твердых электролитов (Киев, 1976; Свердловск, 1979; Ленинград, 1983; Екатеринбург, 1992), на Международной конференции «Дефекты в диэлектрических кристаллах» (Рига, 1981), на VI Всесоюзной конференции по электрохимии (Москва, 1982), на III Всесоюзном семинаре «Ионика твердого тела» (Вильнюс, 1983), на семинарах в ИФТТ АН СССР (Черноголовка, 1984), в ФТИ им. А.Ф. Иоффе АН СССР (Ленинград, 1983), в ИНХП АН СССР (Черноголовка, 1984), на семинарах Секции Научного Совета АН СССР по физической химии ионных расплавов и твердых электролитов «Ионика твердого тела» в Риге (1981, 1982, 1984, 1985, 1986, 1988), Республиканской конференции «Физика твердого тела и новые области ее применения» (Караганда, 1986, 1990), III Всесоюзном совещании по химическим реактивам «Состояние и перспективы развития ассортимента химических реактивов для важнейших отраслей народного хозяйства и научных исследований» (Ашхабад, 1989), III Всесоюзном симпозиуме «Твердые электролиты и их практическое применение» (Минск, 1990), Conf. «Sensor Tekhno - 93S (St. -Petersburg, 1993), Всероссийской научно-технической конференции «Датчики и преобразователи информации систем измерения, контроля и управления» (Гурзуф, 1994), Всесоюзной конференции «Современные технологии в образовании и науке» (Саратов, 1998, 1999), 12th International conference on solid state ionics (Greece, 1999), 5-м международном совещании.

Основные положения диссертации изложены в 56 публикациях, наиболее важные из которых приведены в автореферате.


Объем и структура работы

Диссертационная работа состоит из введения, 7 глав, основных выводов и заключения. Изложена на 302 страницах машинописного текста, включая 129 рисунков и 29 таблиц. Список цитируемой литературы содержит 335 наименований.

Основное содержание работы

Во введении приводятся обоснование актуальности выбранной темы, цель и задачи работы, рассматриваются научная новизна и практическая ценность полученных результатов, дается содержание основных положений, выносимых на защиту.

В первой главе систематизированы и представлены наиболее характерные суперионные проводники. Рассмотрены теоретические основы метода исследования гетеропереходов с суперионными проводниками - метод импеданса, метод вольтамперометрии, методы измерения электронной и дырочной проводимостей. Критически разобраны известные методы синтеза и выращивания монокристаллов. Сделан вывод, что перспективной системой для выращивания чистых и совершенных монокристаллов Ag4RbJ5 может быть система MJ-AgJ-СН3СОСН3. Проведен анализ известных результатов исследования ионной проводимости, диффузии, термодинамических свойств суперионных проводников. Отмечено, что подавляющее число исследований выполнено на поликристаллических образцах, чистоту и фазовый состав которых в большинстве случаев не определяли. Глава завершается обсуждением основных направлений исследования и выбором объектов.

Во второй главе приведено описание методов исследований суперионных проводников, гетеропереходов. Приводятся результаты исследования систем для получения монокристаллов. Описан способ получения монокристаллов.

Для изучения системы и идентификации кристаллизующихся фаз измеряли температурные зависимости растворимости и плотности раствора (метод взвешивания кварцевого эталона в растворе). Для идентификации кристаллизующихся фаз были применены визуальный политермический анализ в малых объемах, рентгенофазовый анализ (ДРОН-2), дифференциально-термический и термовесовой анализы (дериватограф Q-1500D). Изучены: огранка кристаллов (гониометр ZRG3), плотность кристаллов (метод гидростатического взвешивания в толуоле). Для выращивания чистых кристаллов разработаны методы очистки AgJ и смеси RbJ-AgJ. Для определения чистоты и состава кристаллизующихся фаз разработаны методы определения AgJ и J2 в составах RbJ-AgJ.

Спектры поглощения изучали с помощью двухлучевого спектрометра «Specord UV-VIS» и спектрофотометра «СФ-16», тепловые эффекты измеряли дифференциальным сканирующим калориметром «DSC-III» и вакуумным адиабатическим калориметром. Для возбуждения люминесценции использовали импульсный лазер ЛГИ-21 (337 нм). Исследование вращения плоскости поляризации проводили с помощью спектрополяриметра, позволяющего определять угол с точностью 0,1°.

Эффективную концентрацию иода в кристаллах определяли методом экстрагирования (растворитель - четыреххлористый углерод).

Исследование процессов диффузии меченых атомов

Измерения активности исследуемых образцов и снятых слоев проводили с помощью одноканального пересчетного прибора ПС02-2еМ и унифицированного сцинтилляционного блока детектирования типа БДБСЗ-leM с кристаллом NaJ(Tl). Радиоактивный препарат наносили в виде раствора, идентичного ростовому раствору, но включающего в себя Ag или,31J. Слои снимали шлифованием.

Концентрацию центров окраски в тонких слоях, при диффузионных исследованиях, определяли с помощью микрофотометра МФ-2. При исследовании интегральной оптической плотности - на спектрофотометре СФ-4.

Измерения импеданса

Измерения частотных зависимостей R, С гетеропереходов проводили с помощью моста переменного тока Р568 в диапазоне 0,04...100 кГц. Колебания температуры в измерительной ячейке не превышали ±0,01 К. Анализ частотных зависимостей R, С импеданса проводили на основе модели релаксации двойного слоя с помощью графоаналитического метода и методом оптимизации.

Метод оптимизации

заключается в компьютерном подборе эквивалентных схем и минимизации нормированной функции ошибок методом сопряженных градиентов и методом Ньютона (табличный процессор Ехсе1). Применялись программы, созданные на языке «Паскаль» и основанные на симплексном методе Нелдера - Мида и на методе Хука - Дживса, отслеживающие локальные и основной минимумы.

Исследования методом потенциодинамической вольтамперометрии проводили с помощью системы, позволяющей автоматизировать работу промышленного потенциостата. В состав системы вошли потенциостат ЕР-21, персональный компьютер, аналого-цифровой и цифроаналоговый преобразователь ЕТ1050 (АЦП-ЦАП).

Измерения ионной проводимости проводили 4 - контактным методом на постоянном токе. В качестве источника постоянного тока (гальваностата) использовали универсальный прибор В7-16А в режиме


Информация о работе «Транспортные процессы и гетеропереходы в твердофазных электрохимических системах»
Раздел: Химия
Количество знаков с пробелами: 55270
Количество таблиц: 2
Количество изображений: 14

Похожие работы

Скачать
36243
0
0

... параметров ионного и электронного транспорта в переходных слоях интерфазы. 4. Принципы создания твердофазных электрохимических преобразователей энергии и информации. 5. Гипотеза о самоорганизации переходных ион-проводящих структур при протекании электрохимических и химических процессов на фазовых границах. Определяющую роль матричных структур в твердофазных электродных реакциях. ...

0 комментариев


Наверх