1. Метод наименьших квадратов для однофакторной линейной регрессии

Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида:

Ŷ = а + bx или Ŷ = a + bx + ε;

Уравнение вида Ŷ = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X. На графике теоретические значения представляют линию регрессии.

X

 

Рисунок 1 – Графическая оценка параметров линейной регрессии

Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК).

МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:

∑(Yi – Ŷ xi)2 → min

Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной.

εi = Yi– Ŷxi.

следовательно ∑εi2 → min

Y

 

X

 
Рисунок 2 – Линия регрессии с минимальной дисперсией остатков

Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.

Обозначим ∑εi2 через S, тогда


S = ∑ (Y–Ŷ xi)2 =∑(Y-a-bx)2;

Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:

b = (ух – у•x)/(x2-x2).

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн.

Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.

Модель: Y = (2/X) + 5; X = 0;

Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%. Формула расчета коэффициента эластичности:

Э = f′(x) X/Y,

где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.


Y = (2/X) + 5,

f′(x) = -2/x2;

Следовательно получим следующее математическое выражение

-2

 

2 + 5X

 
Э = =

При заданном значении X = 0 получим, что коэффициент эластичности равен Э = -1.

Допустим, что заданная функция Y = (2/X) + 5 определяет зависимость спроса от цены. В этом случае с ростом цены на 1% спрос снижается в среднем на 1%.

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района

Фактор

Уровень убыточности, %

Сбор овощей с 1 га, ц

Затраты труда, человеко-часов на 1 ц

1

93,2

2,3

8,8

2

65,9

26,8

39,4

3

44,6

22,8

26,2

4

18,7

56,6

78,8

5

64,6

16,4

34

6

25,6

26,5

47,6

7

47,2

26

43,7

8

48,2

12,4

23,6

9

64,1

10

19,9

10

30,3

41,7

50

11

28,4

47,9

63,1

12

47,8

32,4

44,2

13

101,3

20,2

11,2

14

31,4

39,6

52,8

15

67,6

18,4

20,2

Нелинейную зависимость принять

Задание №1

Построим линейную зависимость показателя от первого фактора.

Обозначим: сбор овощей с 1 Га как X1, а уровень убыточности как Y.

Сбор овощей с 1 га, ц

Уровень убыточности, %

X1

Y

93,2

8,8

65,9

39,4

44,6

26,2

18,7

78,8

64,6

34

25,6

47,6

47,2

43,7

48,2

23,6

64,1

19,9

30,3

50

28,4

63,1

47,8

44,2

101,3

11,2

31,4

52,8

67,6

20,2

Найдем основные числовые характеристики.

1.  Объем выборки n = 15 – суммарное число наблюдений.

2.  Минимальное значение величины сбора овощей Х=18,7;

Максимальное значение сбора овощей Х=101,3;

Минимальное значение величины уровня убыточности Y=8,8;

Максимальное значение величины уровня убыточности Y=78,8;

3.  Среднее значение:

X = ∑xi.

Среднее значение величины сбора овощей X = 778,9/15 = 51,926.

Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.


Информация о работе «Метод наименьших квадратов для однофакторной линейной регрессии»
Раздел: Экономика
Количество знаков с пробелами: 21813
Количество таблиц: 11
Количество изображений: 2

Похожие работы

Скачать
8492
19
6

... № 2 Результаты обследования десяти статистически однородных филиалов фирмы в таблице (цифры условные). Требуется: А. Построить модель парной линейной прогрессии производительности труда от фактора фондовооруженности, определить коэффициент регрессии, рассчитать парный коэффициент корреляции, оценить тесноту корреляционной связи, найти коэффициент эластичности и бета – коэффициент: пояснить ...

Скачать
83374
2
16

... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...

Скачать
27787
1
2

... относятся: метод взаимосвязанных параллельных рядов, балансовый метод, индексный метод, метод аналитических группировок, корреляционные таблицы и графический метод. Метод взаимосвязанных параллельных рядов состоит в установлении связей между экономическими явлениями посредством сопоставления показателей двух или нескольких рядов. Для этого признак-фактор ранжируется, т.е. располагается в порядке ...

Скачать
33994
14
2

... : Вычисляем среднеквадратическое отклонение: Далее определяем коэффициент вариации: Выводы: в процессе выполнения лабораторной работы были изучены принципы и методы отбора образцов, проб и выборок при исследовании свойств текстильных материалов, способы вычисления основных статистических характеристик. Были определены структурные характеристики, поверхностная плотность и толщина кожи ...

0 комментариев


Наверх