3.4 Приборы для наблюдений
Для определения метеоэлементов естественной карстовой полости используются стандартные гидрометеорологические приборы: барометр -анероид ( погрешность +_ 100 Па), срочные максимальные и минимальные термометры ( погрешность +_ 0,1 - 0,2 град.), аспирационный психрометр ( поггрешность по влажности +_ 1-4%), крыльчатый или чашечный анемометры , в данном конкретном случае крыльчатый, (погрешность +_ 0,1 - 0,2 м/с). Газовый состав воздуха на месте исследуется с помощью шахтного интерферометра ( СО2 , СН 4) или экспересс-методом ( СО2) , однако набор определяемых при этом компонентов ограничен, а точность невелика ( погрешность +_0,5%). В связи с этим основными при изучении газового состава воздуха являются лабораторные методы определения состава отобранных проб ( газовая хроматография). Для определния генезиса углекислоты используется масс-спектрометрический метод анализа изотопного стостава углерода.
Для непрерывной регистрации изменений температуры, влажности и даления воздуха используют суточные, (недельные) термографы, барографы и гигрографы ( погрешности +- 1 гр.С, +_1% влажности, +_ 100Па соответственно).
В связи с недостаточной локальностью стандартных приборов, их невысокой точностью и значительной инерционностью при изучении микроклимата пещер следует применять приборы ( термоэлементы и терморезисторы для измерения температуры , термоанемометры, макроманометры и т.д.), обладающие более высокой точностью ( погрешность измерения температуры 0,01 гр.С, влажности 0,5%, скорости воздуха 0,01 м/с, давления 10 Па), низкой инерционностью и т.д. Применение этих приборов требует их обязательной поверки по стандартным метеорологическим или образцовым приборам. Осредненная скорость движения воздуха определяется путем последовательных замеров в узлах прямоугольной сетки ( с шагом 0,25 - 0,5 В), перекрывающей поперечное сечение хода. Локальные изменения метеоэлементов производят в 5-10-20 см от пола посредине хода с указанием характера подстилающей поверхности ( песок, гравий, лед и т.д.).
При регулярных наблюдениях для выявления крупномасштабных особенностей полей температуры (влажности) производят замерения по длине ходов ( продольные разрезы) по площади залов ( на основе сетки измерительных точек), а также по сечению хода с шагом 0,5 - 1,0 ;0 - 2, 0 - 5,0 м, зависящем от размеров полости и задач исследования. Для определения параметров гидродинамического и термического взаимодействия воздушного потока со вмещающей породой, как правило, в местах с ощутимой воздушной тягой производят градиентные наблюдения на расстояниях 0,1-0,2-0,5-1,0-1,5-2,0 м от пола ( стен), совмещая их с замерами температуры пола ( стен) и всех водопроявлений в исследуемом сечении.
Отбор проб воздуха для изучения газового состава производится путем накачки ( прокачки) в стеклянные газовые пипетки с трубками из вакуумного стекла ( либо в резиновые или полиэтиленовые емкости) объемом не менее 250 мм с зажимами. Размещение точек отбора проб должно выявить вариации газового состава по площади и на разных уровнях пещеры. Режимный отбор проб, обеспечивающий изучение внутрисуточных, межсуточных и сезонных вариаций газового состава воздуха пещер, следует проводить на фиксированных точках.
Обработка наблюдений
Методика первичной обработки резуьтатов наблюдений излагается в соответствующих руководствах ( Методические..., 1951,1953,1954) .
Для обработки результатов измерений, выполненных с помощью аспирационного психрометра и дальнейших расчетов тепловлажностных свойств воздуха следует применять Психрометрические таблицы (1972) и J- диаграмму ( Свойства ..., 1963).
На основе первичных данных наблюдений определяются параметры воздухообмена ( сезонные схемы вентиляции, режимы давления, расход воздушного потока и коэффициент воздухообмена в разные сезоны), величина и направление перепадов температур вода-воздуха, стена ( пол ) - воздух, амплитуды суточных (сезонных ) колебаний основных метеоэлементов по участкам полости и т.д..
По сводным результатам измерений строят графики - изменения температуры ( влажности ) по основным галереям полости, температурные поля по сечениям ходов и площади залов, совмещенные графики суточного (сезонного) изменения метеоэлементов на поверхности и под землей; расчитывают гистограммы распределния температуры ( влажности по длине ходов ,площади или объема полости для вычисления соответствующих осредненных величин, используемых при составлении тепловых балансов и расчетов конденсации. Графически исследуют корреляционные связи между температурой ( влажности ) и глубиной ( длиной) полости , направлением и скоростью воздушного потока и перпадом давления на исследуемом участке и т.д., подбирают апраксимирующие уравнения и находят их коэффициент.
По результатам анализов газового состава воздуха определяют абсолютне пределы изменениний содержания компонентов для данной полости, пределы изменений и средние значения по месяцам и осредненные значения для участков, различных по морфологии и условиям заложения. Строятся графики изменения газосодержания по высоте над полом и графики сезонного хода содержания. Результат газового анализа выражаются в объемных процентах. Для оценки изменения газового состава пещерного воздуха при смешивании с атмосферой использую специальные расчетные приемы .
Изменчивость газового состава воздуха в пространстве пещеры и во времени анализируются в тесной связи с режимом воздушной циркуляции и другими возможными газоформирующими факторами. Для определения генезиса углекислоты используются данные по изотопному составу углерода.
Заключительный этап обработки материала - построение математической модели микроклимата пещеры на основе аналитических зависимостей, балансовых расчнтов, численного моделирования или изучения статистических связей между ее основными морфолого-морфометрическими параметрами, геолого-литологическими, теплофизическими и другими характеристиками и климатическими условиями на поверхности. Что можно охарактеризовать как общие задачи мониторинга пещеры.
При изучении сложных карстовых систем (таковой является Мраморная), и проведении специальных исследований ( изучение причин и динамики развития подземного оледенения, роста геликтитов, что также очень актуально для Мраморной ,и пр.) необходима разработка специальных приборов и методических приемов исследований.
Все данные, на которых базируется настоящая работа, получены в соответствии с требованиями изложенной выше методики. Кроме того для обработки наблюдений использованы не описываемые в методике методы компьютерной обработки информации, получившие распространение только в последние 4-5лет ( на территории СНГ). Использовалась компьютерная база Киевского карстолого-спелеологического центра и Института минеральных ресурсов АН Украины.
4.Характеристика микроклимата пещеры
... Результат выражается в коли – индексе, т. Е. количество БГКП, обнаруженных в 1 г почвы. Глава 3 Результаты исследования В ходе работы было проведено микробиологическое исследование образцов грунта пещеры Баскунчакская. Для выделения бактерий, дрожжей и грибов, представляющих естественную микрофлору пещеры, использовались среда МПА, Чапека и Сабуро. Учет численности проводился через 48 часов на ...
... и в первую очередь теми, кто идет в пещеры на длительно время (более одних суток). В заключение необходимо подчеркнуть, что одной из приоритетных задач дальнейшего изучения пещер Башкирии должна, по-видимому, являться оценка их радиационной безопасности и прежде всего тех, которые наиболее часто посещаются. Такая оценка позволит определить предельно допустимое пребывание человека в пещерах (или ...
... способной растворять. При отсутствии одного из них карстообразования не будет. Карст – процесс химического (растворение) и отчасти механического (разрушение струёй) воздействия вод на растворимые проницаемые горные породы. В карстовых шахтах горных областей воды, насыщенные гидрокарбонатным ионом и кальцием за счёт контакта со стенками в верхних участках, в нижней части уже не способны растворять. ...
... , необходимых для осуществления проектного решения. СНиП 11-01-95 “Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений”. Проект состоит из технологической и строительно-экономической частей. Экономическое обоснование технологической части выполняется инженерами-технологами и экономистами-технологами, а ...
0 комментариев