Введение

Автомобили в структуре современного промышленного и сельскохозяйственного производства являются мобильными транспортными средствами, получившими широкое распространение. От знания устройства автомобилей и умение грамотно эксплуатировать их во многом зависит эффективное и экономичное использование транспортных средств.

При изучении дисциплины «Автомобили» рассматриваются конструкции основных современных автомобилей и их двигателей, теория, конструирование и расчет двигателей и автомобилей.

Проведение практических расчетов закрепляет основы теории и расчёта автомобилей и позволяет освоить основные технические показатели и характеристики автомобилей.

Составной частью курсовой работы является проведение теплового расчёта двигателя проектируемого автомобиля. Тепловой расчёт позволяет аналитически с достаточной степенью точности определить основные параметры вновь проектируемого или модернизируемого двигателя, а также оценить индикаторные и эффективные показатели его работы. Результаты теплового расчёта ДВС в дальнейшем используются для расчёта и построения теоретической внешней скоростной характеристики двигателя, в свою очередь используемую при расчёте динамики автомобиля.


1. Определение необходимой мощности двигателя

При установившемся движении мощность автомобиля расходуется на преодоление сопротивления дороги и воздуха.

где Ga, Gr – вес автомобиля и груза, Н;

Pw – сила сопротивления воздуха при скорости движения V (м/с), Н;

hтр – КПД трансмиссии; (0.8 – 0.92) hтр=0,82

f – осредненный коэффициент сопротивления качению, который обычно находится экспериментально для определенных дорожных условий и шин. f=0,025–0,035, принимаем f=0,025

Pw = k × F × V2

где k – коэффициент обтекаемости, Н × с24 принимаем k=0.5

F – площадь лобового сопротивления, м2

F=Br•Hr=1.65•2.15=3.5 м2

Br, Hr – габаритные ширина и высота, м;

Pw=0.5•3.5•376.36=667.5 H

кВт

2. Тепловой расчёт двигателя

 

Выбор исходных данных для расчёта рабочего цикла двигателя.

Для выполнения теплового расчёта использовалась программа на ЭВМ, разработанная по методике, изложенной в [1].

Элементарный состав топлива

Жидкое моторное топливо нефтяного происхождения характеризуется следующим элементарным составом (по массе)

C+H+O=1 кг

где C, H, O – содержание соответственно углерода, водорода и кислорода в 1 кг топлива.

При выполнении расчётов рабочего цикла двигателя кроме элементарного состава топлива следует задать удельную низшую теплоту сгорания Qн и среднюю молярную массу mт топлива.

C=0.855 кг

H=0,145 кг

Qн=115 г./моль

mт=44000 кДж/кг

Коэффициент избытка воздуха

Коэффициент избытка воздуха a определяет состав горючей смеси. Его значение зависит от типа смесеобразования, условий воспламенения и сгорания топлива, а также от режима работы двигателя. Коэффициент избытка воздуха влияет на количество выделяемой теплоты и состав продуктов сгорания.

Рекомендуемые величины a для номинального режима работы: карбюраторных бензиновых двигателей – 0,85–0,95; принимает a=0.85

Степень сжатия

В двигателях с воспламенением от электрической свечи значение ε ограничивается по условию предупреждения явления детонации и выбор её зависит от антидетонационных свойств топлива. Большое значение для бездетонационной работы карбюраторного двигателя имеют также материалы, применяемые при изготовлении камеры сгорания. Например, замена чугунной головки блока на алюминиевую позволяет повысить ε на 0,5, а замена чугунного поршня на алюминиевый – на 0,4…0,7. Характерные величины степени сжатия ε: для бензиновых карбюраторных двигателей – 6…11; принимаем ε=6,69899

Подогрев заряда

Степень подогрева заряда DТ – изменение его температуры при движении по впускному тракту и внутри цилиндра. Значение подогрева заряда DТ зависит от конструкции и установки на двигателе впускного трубопровода, организации его подогрева и скоростного режима двигателя. Повышение DТ улучшает процесс испарения топлива, но при этом снижается плотность заряда, что отрицательно влияет на наполнение цилиндров и мощность двигателя.

Для четырехтактного автотракторного двигателя значение DТ принимают в следующих пределах:

-  для карбюраторных двигателей – I0…30 К, DТ=10 К; принимаем DТ=10К

Давление и температура остаточных газов

Температура остаточных газов для карбюраторных двигателей 900–1100 К. Давление остаточных газов зависит от числа и расположения клапанов, сопротивления впускного и выпускного трактов, фаз газораспределения, частоты врaщения и нагрузки двигателя, способа наддува и других факторов и определяется давлением среды в которую происходит выпуск отработавших газов, то есть давлением окружающей среды при выпуске в атмосферу или давлением перед турбиной при газотурбинном наддуве.

Для автотракторных двигателей без наддува при выпуске в атмосферу давление остаточных газов принимают: Pr=(1,05 … 1,25) P0,

где P0 – давление окружающей среды, P0 = 0,1013 МПа.

Pr=0,108 МПа.

Понижение давления на впуске

У четырёхтактных автотракторных двигателей значение DPa составляет: для карбюраторных двигателей – (0,05–0,2) Pk

Показатель политропы сжатия

Ориентировочные значения показателя политропы сжатия для современных автотракторных двигателей находятся в следующих пределах: для карбюраторных двигателей (при полном открытии дроссельной заслонки) – 1,34…1,39; принимаем n1=1.34

Показатель политропы расширения

Ориентировочные значения среднего показателя политропы расширения для современных автомобильных и тракторных двигателей при номинальной нагрузке находится в пределах: для карбюраторных двигателей – 1,23–1,30; принимаем n2=1.25

Коэффициент использования теплоты

Коэффициент использования теплоты для современных автотракторных двигателей находится в следующих пределах: для карбюраторных двигателей – 0,85–0,95; принимаем ξ=0,85

Коэффициент полноты диаграммы

Коэффициент полноты диаграммы принимают: для карбюраторных двигателей – 0,94–0,97; принимаем φп=0,949


Информация о работе «Тепловой расчет двигателя автомобиля»
Раздел: Транспорт
Количество знаков с пробелами: 20126
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
55241
10
2

... вала. Таблица 4.3. Результаты расчета крутящего момента По полученным в табл 8. данным Мкр строим график в масштабе Мм= и Мφ=3º в мм. Определяем средний крутящий момент двигателя: – по данным теплового расчета: Мкр.ср.= Мi = Ме / ηм , Н×м ; (116) Мкр.ср.= 220,81 / 0,879 = 251,2 Н×м. – по площади, заключенной под кривой Мкр: Мкр.ср= (F1-F2) ·Мм / ...

Скачать
25488
6
2

... и точки расширения соединяем плавными кривыми. После этого достраиваем процессы газообмена. Полученная индикаторная диаграмма двигателя внутреннего сгорания дизеля MAN изображена на рисунке 14.1. Рисунок 14.1 - Индикаторная диаграмма ДВС MAN. Выводы Результаты расчетов и общепринятые границы изменения расчетных параметров сводим в таблицу. Таблица - Результаты расчетов. НАЗВАНИЕ ...

Скачать
22960
2
3

... двигателя. На основе установленных исходных данных (тип двигателя, мощность, частота вращения коленчатого вала, число и расположение цилиндров, отношение S/D, степень сжатия) проводят тепловой расчет двигателя, в результате которого определяют основные энергетические, экономические и конструктивные параметры двигателя. По результатам теплового расчета строят индикаторную диаграмму. Параметры, ...

Скачать
16265
11
0

... (кг.град.) – удельная газовая постоянная для воздуха. (1) Потери давления на впуске. При учете качественной обработки внутренних поверхностей впускных систем для карбюраторного двигателя можно принять β2 + ξВП = 2,8 и  ωВП = 95 м/с. β – коэффициент затухания скорости движения заряда в рассматриваемом сечении ...

0 комментариев


Наверх