3.2 Определение усилий, действующих на поршневой палец вдоль оси цилиндра
Вдоль оси цилиндра на поршень действует сила давления газов и силы инерции возвратно-поступательно движущихся масс.
Для удобства сложения сил давления газов Fr и сил инерции Fj возвратно-поступательно движущихся масс изображаем их в одинаковом масштабе, что позволяет графически получить суммарное усилие, действующее на поршневой палец
Силы давления газов определяем по формуле
,
(68)
где Ps - текущее давление газов по индикаторной диаграмме, Па;
Po =98100 - атмосферное давление, Па;
D =0,094- диаметр цилиндра, м.
Сила инерции Fj складывается из сил инерции первого Fj1 и второго Fj2 порядков
(69)
где m - приведенная масса возвратно-поступательно движущихся частей, кг.
Приведенная масса возвратно-поступательно движущихся частей состоит из массы поршня и части массы шатуна. В расчетах принимаем
m=mп+0,275mш;
mп=254=1,76 кг;
mш=300=2,08 кг;
m=1,76 +0,2752,08=2,33 кг;
где масса поршня mп и масса шатуна mш найдены по величине удельной массы этих узлов, то есть массы, отнесенной к площади поршня. Для тракторных двигателей величины удельных масс поршня и шатуна имеют следующие значения: mп=254, mш=300
Силы давления газов и силы инерции принимаем положительными, если они действуют к оси коленчатого вала, и отрицательными, если они направлены от коленвала. Определив по формулам (35), (36) величины Fr и Fj для различных значений угла поворота кривошипа, строим график зависимости суммарного усилия, действующего на поршень вдоль оси цилиндра от угла α. Результат расчетов сводим в таблицу (смотри приложение).
3.3 Определение усилий, действующих на шатунную шейку коленчатого валаСуммарная сила F∑, действующая на поршневой палец, раскладываем на две составляющие (рис 1):
Нормальную
(70)
и силу S, направленную вдоль оси шатуна
(71)
Силу S, действующую на шатунную шейку, разлаживаем на радиальную K¢ и тангенциальную Т составляющие, определяемые по формулам
(72)
(73)
Кроме того, на шатунную шейку действует центробежная сила вызванная вращением масс шатуна, приведенных к его нижней головке. Величину
определяем по формуле
, (74)
где mнгш = 0.725mш =0,725
2,08=1,508 – масса шатуна, приведенная к его нижней головке, кг.
Результирующая радиальная сила определяется алгебраической суммой составляющих и К', то есть
(75)
Основным назначением маховика является обеспечение заданной равномерности вращения коленчатого вала и возможности трогания трактора с места. Причиной неравномерности вращения коленчатого вала двигателя при установившимся режиме является периодический характер изменения крутящего момента.
Степень равномерности вращения коленчатого вала при установившимся режиме характеризуется коэффициентом неравномерности хода
, (76)
где wmax – максимальная угловая скорость вала, рад/с;
wmin – минимальная угловая скорость вала, рад/с;
wср – средняя угловая скорость коленчатого вала, рад/с;
В то же время величина d определяется из соотношения
, (77)
где Lизб – избыточная работа крутящего момента, Дж;
Io – приведенный к оси коленчатого вала момент инерции движущихся масс двигателя .
Для определения параметров маховика необходимо найти его момент инерции, который для тракторных двигателей равен
Iм = 0,825 Io, (78)
где Io определяется из (62), причем избыточная работа Lизб берется из
соотношений Lизб / Lср =0,17.
Средняя работа крутящего момента
Lср = Mср Dj= Mср4p, (79)
где Dj - один цикл работы двигателя, выраженный в радианах (для четырехтактного двигателя Dj = 4p);
Mср – средний крутящий момент.
I0=Lизб/dw2=Lср
0,17/d
w2
I0=Мсрp
0,68/d
w2
IМ=0,561p
Мср/d
w2
Для нахождения Mср построим кривую изменения суммарного крутящего момента двигателя как функцию угла поворота a.
Для построения кривой моментов используется график касательных сил Т, учитывая, что для одного цилиндра
Mкрц = Тr
Определение крутящего момента многоцилиндрового двигателя производим путем суммирования крутящих моментов отдельных цилиндров, для чего на график Мкрц первого цилиндра накладывают графики Мкрц остальных цилиндров, учитывая сдвиг фаз q
Для четырехтактных двигателей q = 7200 / 4 =1800;
Суммирование производим как графически, так и аналитически, табличным способом (смотри приложение)
Средний крутящий момент
Мср=318 Нм;
Полученную величину Мср контролируем, используя формулу
Н
м (80)
где Mе- эффективный крутящий момент;
ηмех - механический КПД
Ошибка ∆=(Мср.- Мср.гр)./ Мср..100=0. Используя формулы (60), (61), (62), находим Iм.
Предварительно принимаем, что средний диаметр маховика равен
Dср =2,5S=2,50,110=0,270 м, (81) где S – ход поршня.
Учитывая, что
, (82)
где mм – масса маховика.
, (83)
, (84)
(85)
Наружный диаметр маховика выбирается с учетом условия прочности, которое выражается в том, чтобы окружная скорость Vм на ободе маховика не превышала допустимой (для чугунных маховиков Vм≤70м/с, для стальных литых Vм≤100м/с, для стальных штампованных Vм≤110м/с)
(86)
Регуляторная характеристика тракторного двигателя показывает зависимость эффективной мощности , крутящего момента
, частоты вращения коленчатого вала
,часового
и удельного эффективного
расходов топлива в зависимости от скоростного и нагрузочного режимов двигателя, работающего на регуляторе. Чаще всего регуляторную характеристику строим как зависимость названных параметров от частоты вращения коленчатого вала и крутящего момента двигателя. Регуляторная характеристика двигателя имеет две ветви: непосредственно регуляторную – при ne³nен и внешнюю скоростную или корректурную – при ne<nен. На корректурной ветви характеристики значения эффективной мощности
и удельного эффективного расхода топлива
рассчитываем в зависимости от частоты вращения коленчатого вала двигателя
по формуле
(87)
, (89)
где - опытные коэффициенты, усредненные значения которых в зависимости от типа двигателя.
- относительная частота вращения коленчатого вала двигателя.
Остальные параметры двигателя определяем из следующих соотношений крутящий момент двигателя
Часовой расход топлива
. (91)
На регуляторной ветви принимается, что момент и часовой расход изменяются линейно от номинальных значений до
и
при
,
где: = 1.07 - коэффициент оборотов холостого хода;
= 0.25...0.3.- коэффициент, учитывающий долю расхода топлива на
холостом ходу от номинального режима.
Промежуточные значения параметров двигателя на регуляторной ветви определяются по следующим соотношениям. Крутящий момент на валу двигателя
. (92)
Часовой расход топлива
. (93)
Эффективная мощность
. (94)
Удельный расход топлива
. (95)
Результаты расчетов и построение теоретической регуляторной характеристики приведены в приложении.
5. Расчет и построение теоретической тяговой характеристики
Определив основные конструктивные и экономические характеристики (параметры) ДВС и трактора в целом, строим тяговую характеристику.
Тяговой характеристикой называют совмещенные графики зависимости мощности Nкр трактора, часового расхода топлива Gт, удельного расхода топлива qкр, рабочей скорости Vр, буксования и тягового КПД в зависимости от силы тяги на крюке. Тяговая характеристика позволяет получить наглядное представление о тяговых и топливно-экономических показателях на различных режимах работы трактора.
Основой для построения теоретической тяговой характеристики служат:
- тяговый расчет трактора,
- регуляторная характеристика двигателя проектируемого трактора,
- зависимость коэффициента буксования от силы тяги на крюке для заданного почвенного агрофона.
При расчете тяговой характеристики трактора определяем величины теоретической и действительной скорости , касательной силы тяги и крюкового усилия
, крюковой или тяговой мощности
, удельного крюкового расхода топлива
на каждой передаче в функции от частоты вращения дизеля и а значения тягового КПД для номинальной частоты.
Расчетные формулы имеют вид
(96)
(97)
где - коэффициент буксования.
При расчете коэффициента буксования используем формулы, полученные путем аппроксимации усредненных опытных кривых буксования для различных агрофонов.
Для колесных тракторов
δ=(0,762у-1,646
у²+1,404
у³)/(10,167-32,5
φ+28,333
φ²), при у>0,5 (98)
δ=(0,29)/(10,167-32,5φ+28,333
φ²), при у≤0,5
где
.
Касательная сила тяги, кН
. (99)
Сила сопротивления качению трактора, кН
. (100)
Крюковое усилие, кН
. (101)
Крюковая мощность, кВт
. (102)
Удельный крюковой расход топлива, г/кВт×ч
. (103)
Тяговый КПД
(104)
Теоретическая тяговая характеристика показывает, как в заданных почвенных условиях при установившемся движении на горизонтальном участке в зависимости от нагрузки на крюке трактора изменяются его основные эксплуатационные показатели: буксование ведущих органов, скорость движения, тяговая мощность, удельный расход топлива и тяговый КПД трактора.
При расчете и построении теоретической тяговой характеристики используем лицензированный программный продукт «EXCEL».
Литература
1. Астахов М.В., Корнилов Е.И. Калуга: МГТУ им. Н.Э. Баумана Калужский филиал, 1998.
2. Чудаков Д.А. Основы теории трактора и автомобиля. М.: Колос, 1972.
3. Николаенко А.В. Теория, конструкция и расчет автотракторных двигателей. М.: Колос, 1984.
4. Львов Е.Д. Теория трактора. М.: Машгиз, 1952.
5. Балабин И.В., Прутин В.А. Автомобильные и тракторные колеса. Челябинск, 1963.
... наличием шин увеличенного размера, отсутствием рессорной подвески переднего моста, усиленными элементами ведущих мостов. На базе трактора Т-157 разработан ряд машин различного назначения. Это: - трелёвочные машины ЛТ-171, ЛТ-157; - лесотранспортные машины ЛТ-143, ЛТ-143А; - погрузочно-транспортная машина ЛТ-175. Краткая техническая характеристика ЛТ-157 представлена в таблице 2.1. ...
... задачи является конструкторско-исследовательским и решает не только конструкторские задачи разработки и применения муфт сцепления с тарельчатой пружиной, но и рассматривает влияние установки данного узла на технические и эксплуатационные показатели трактора в целом. Трактора класса 2 мощностью 120 л.с. предназначены для выполнения полного спектра сельскохозяйственных работ от подготовки почвы ...
... привод ведущих колес с блокировкой; - повышенная проходимость колесного двигателя; - защита кабины, дополнительное освещение и ряд других требований. Проектируемый колесный трактор может быть использован на всех видах лесохозяйственных работ, а именно: - трелевка деревьев от рубок ухода с применением гидрозахвата или других трелевочных приспособлений; - посев и уход за лесными культурами; - ...
... воздушной заслонки аварийной остановки двигателя; 18 - вентиль выпуска воздуха из топливной системы; 19 - электростартер; 20 –пусковой двигатель; 21 - редуктор пускового устройства. 2.2. Работа двигателя На тракторе Т-130 установлен четырехцилиндровый, четырехтактный дизельный двигатель Д-160 с турбонаддувом. Рабочий цикл четырехтактных двигателей совершается за два оборота коленчатого ...
0 комментариев