6. Оценка помех, влияющих на передачу сигнального тока

Передача сигналов АЛС происходит в специфических, свойственных только ей условиях. Во-первых, сигнал в каждой рельсовой цепи передается только от собственного источника и его уровень в рельсах по мере движения поезда непрерывно возрастает. Во-вторых, переход локомотива с одной рельсовой цепи на другую сопровождается кратковременным перерывом в приеме сигналов с пути и резким уменьшением сигнального тока в рельсах. К тому же, рельсовые цепи, связывающие движущийся локомотив с передатчиком сигналов, одновременно используют как в системе автоблокировки, так и на электрифицированных железных дорогах для пропуска тягового тока. Итак, существует большое число возможных воздействий на прием сигналов АЛС.

Источниками гармонических помех являются тяговые сети постоянного тока и токи рельсовых цепей с отличной сигнальной частотой.

В настоящее время широко применяются шестипульсовые выпрямители, хотя следует отметить перспективность двенадцати- и двадцатичетырехпульсовых выпрямителей. В табл. 2. приведены величины амплитуд гармонических составляющих в кривой выпрямленного напряжения в режиме холостого хода выпрямителя при симметричном синусоидальном первичном напряжении для шести-, двенадцати- и двадцатичетырехпульсовых выпрямителей.

При несимметричных несинусоидальных первичных напряжениях, кроме канонических (четных) гармоник, кратных 300 Гц для шестипульсовых выпрямителей, 600 Гц – для двенадцатипульсовых и 1200Гц – для двадцатичетырехпульсовых, в кривой выпрямленного напряжения присутствуют и неканонические (нечетные), кратные 50 Гц (50, 100, 150 Гц и т.д.). Величины неканонических гармонических составляющих зависят от углов коммутации и запаздывания при несимметрии питающего напряжения управляемых выпрямителей. Так, при угле запаздывания 600 и углах коммутации от 0 до 100 они могут достигать для шестой гармоники 25 % от выпрямленного напряжения, двенадцатой – 11,5%, восемнадцатой и двадцать четвертой – 6%, четырнадцатой, шестнадцатой, двадцатой и двадцать второй – 1,5%. При больших углах коммутации величина амплитуды гармоники снижается [16].

Таблица 2

Величины амплитуд гармонических составляющих в кривой выпрямленного напряжения в режиме холостого хода выпрямителя

Номер гармоники 6 12 18 24 30 36 42 48

Частота гармоники, Гц

300 600 900 1200 1500 1800 2100 2400

Относительные величины амплитуд гармоник к постоянной составляющей выпрямленного напряжения, %

5,7 1,4 0,6 0,35 0,22 0,15 0,11 0,09
Амплитуда гармоники в зависимости от типа выпрями-теля, В

6-пульсовый

47,02 11,55 4,95 2,8875 1,815 1,237 0,9075 0,7425

12-пульсовый

- 11,55 - 2,8875 - 1,237 - 0,7425

24-пульсовый

- - - 2,8875 - - - 0,7425

Тяговый ток протекает по двум рельсовым линиям. ЭДС, индуктируемые в приемных катушках, направлены встречно и взаимно складываются. Поэтому, мешающее воздействие тяговых токов и их гармоник на устройства АЛС проявляется лишь тогда, когда токи в рельсах оказываются неравными между собой или в приемных катушках равные токи индуктируют неравные ЭДС [17].

Проанализируем причины появления импульсных помех.

Импульсные помехи возникают, как правило, в результате резких изменений значений тягового тока в рельсах, на локомотиве, а также намагничиваемости рельсов. Как указывается в работе [17], продолжительность периода следования разнополярных импульсов помех зависит от расстояния между магнитными полюсами намагничиваемого места и скорости движения поезда. Примерно при скорости движения поезда 120 км/ч продолжительность периода импульса совпадает с периодом колебаний сигнальной частоты 25 Гц для АЛС электрифицированных железных дорог переменного тока. При проведении экспериментальных исследований в метро такой гармоники обнаружено не было.

Источники импульсных помех – коммутационные процессы при токосъеме, в коллекторах машин, преобразовательных установках и других элементах электрической схемы локомотива.

Помехи, вызванные работой коллекторного генератора постоянного тока, обусловлены дискретностью строения магнитной системы и обмотки якоря. Частота основной гармоники, вызванной коммутациями (иначе, коротким замыканием секций якоря щеткой), определяется из соотношения

,

где р – число пар полюсов электрической машины;

 n – частота вращения якоря, мин –1.

Частота основной гармоники переменной составляющей равна 30 Гц. Здесь наиболее весомыми являются гармоники от 0 до 350 Гц.

Пазовые и зубцевые помехи вызваны поперечными и продольными пульсациями магнитного потока и зависят от частоты вращения якоря n и количества пазов z.

Частота зубцевых fзп и пазовых fпп помех

;

 при z/p четных и  при z/p нечетных.

Наиболее весомыми здесь являются гармоники 0 –350 и 850 – 1000Гц, а пазовых – 0 – 150, 400 – 500, 600 – 900 Гц [].

Также наблюдаются случайные импульсные помехи, возникающие при процессах коммутации в электрических аппаратах, длительностью до 10 мкс.

 

7. Выводы

 

В результате проделанной работы можно сделать следующие выводы:

-  для оценки численных и временных параметров кодов АЛС предлагается устройство, построенное на базе микропроцессорной технике и персонального ЭВМ типа IBM PC;

-  данное устройство позволяет анализировать степень влияния помех, возникающих в рельсовой цепи, на устройства АЛС и определить причины их появления;

-  причины появления помех в рельсовой цепи описаны;

-  результаты измерений сигнала, записанного с выходов катушек АЛС системой «Контроль» представлены;

-  таким образом, предлагаемое устройство является многофункциональным и позволяет контролировать параметры кодовых сигналов системы АЛС и определять величины помех, влияющих на работу устройств автоматики, как во время измерительной поездки, так и в процессе эксплуатации локомотива.


Заключение

 

В процессе курсового проектирования заданная тупиковая пассажирская станция была оборудована блочно-маршрутной релейной централизацией, разработан однониточный и двуниточный план станции и выполнены соответствующие расчеты (определены ординаты стрелок, светофоров и изостыков, рассчитана пропускная способность станции, жильность кабелей, электроэнергия, потребляемая постом ЭЦ).

Также в данной работе проанализированы виды и причины отказов, возникающих в устройствах автоблокировки.

Для оценки численных и временных параметров кодов АЛС предлагается устройство, построенное на базе микропроцессорной технике и персонального ЭВМ типа IBM PC. Данное устройство позволяет анализировать степень влияния помех, возникающих в рельсовой цепи, на устройства АЛС и аналитически определить причины их появления. Поэтому предлагаемая система контроля параметров кодов АЛС является многофункциональной и позволяет производить измерения как во время измерительной поездки, так и в процессе эксплуатации локомотива.

Также в процессе выполнения курсового проекта был рассчитан экономический эффект от внедрения предлагаемой системы контроля параметров кодов АЛС и освещены вопросы техники безопасности при работе компьютерной техникой.


Информация о работе «Электромагнитная совместимость устройств автоматической локомотивной сигнализации с тяговой сетью»
Раздел: Транспорт
Количество знаков с пробелами: 32109
Количество таблиц: 2
Количество изображений: 5

Похожие работы

Скачать
34623
0
8

... переменного тока. Для защиты МПП-ЧКЕ от грозовых перенапряжений на его входе (до фильтров) включен электронный блок защиты БЗЭ-1 с порогом ограничения напряжения 70 В. Структурно микропроцессорный путевой приемник системы автоблокировки АБ-ЧКЕ выполнен по схеме "два по два" (рис.4.26). Он состоит из двух двухкомплектных каналов и интерфейсного модуля ИМ. Каждый канал содержит два узла ЦП1 и ЦП2 ...

Скачать
53911
8
3

... осмотров работников локомотивных бригад от 1.05.98г. 6.  К.Б.Кузнецов Безопасность жизнедеятельности, ч.1, М.: Маршрут, 2006г.; 7.  В.И. Зорин, Е.Е. Шухина, П.В. Титов Микропроцессорные локомотивные системы обеспечения безопасности движения поездов нового поколения, ж-л «Железные дороги мира», №7, 2003г; 8.  Материалы с выставки, посвященной 130-летию Свердловской железной дороги, секция НПО « ...

Скачать
56678
1
0

... . С 1932 г. Строительство автоблокировки ведется только на отечественной аппаратуре. Во второй половине 30-х годов по разработкам Всесоюзного научно-исследовательского института железнодорожного транспорта (ЦНИИ МПС) была создана отечественная система автоматической локомотивной сигнализации (АЛС). Впервые эта система была внедрена на участке Москва-Серпухов. Одновременно с внедрением велись ...

Скачать
142912
21
0

... году по сравнению с 2002 годом. Комплекс мер, необходимых для улучшения ситуации в этой сфере перечислен в параграфе 3.2. 3.2 Разработка плана маркетинговой деятельности железнодорожного предприятия на 2004 год План маркетинговой деятельности предприятия на 2004 год разобьем на две части: маркетинговый план по основной деятельности предприятия (обеспечение перевозок, ремонт локомотивов) и ...

0 комментариев


Наверх