3.2.2 Статор
Статор[Рис. 5] имеет традиционную конструкцию и похож на статор асинхронной машины. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки,уложенной в пазы по периметру сердечника. Количество обмоток определяет количество фаз двигателя. Для самозапуска и вращения достаточно двух фаз — синусной и косинусной. Обычно ВД трёхфазные, реже- четырёхфазные.
По способу укладки витков в обмотки статора различают двигатели имеющие обратную электродвижущую силу трапецеидальной (BLDC) и синусоидальной (PMSM) формы. По способу питания фазный электрический ток в соответствующих типах двигателя также изменяется трапецеидально или синусоидально.
(Рис. 5 Статор бесколлекторного электродвигателя)
3.2.3Ротор
Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до восьми пар полюсов с чередованием северного и южного полюсов.
Вначале для изготовления ротора использовались ферритовые магниты. Они распространены и дёшевы, но им присущ недостаток в виде низкого уровня магнитной индукции. Сейчас получают популярность магниты из редкоземельных сплавов, так как они позволяют получить высокий уровень магнитной индукции и уменьшить размер ротора.
3.2.4 Датчик положения ротора
Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрический, индуктивный, на эффекте Холла, и т. д. Наибольшую популярность приобрели датчики Холла и фотоэлектрические, так как они практически безинерционны и позволяют избавиться от запаздывания в канале обратной связи по положению ротора.
Фотоэлектрический датчик, в классическом виде, содержит три неподвижных фотоприёмника, которые поочерёдно закрываются шторкой вращающейся синхронно с ротором. Это показано на рисунке. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора. Сигналы датчиков преобразуются управляющим устройством в комбинацию управляющих напряжений, которые управляют силовыми ключами, так, что в каждый такт (фазу) работы двигателя включены два ключа и к сети подключены последовательно две из трёх обмоток якоря. Обмотки якоря U, V, W расположены на статоре со сдвигом на 120° и их начала и концы соединены так, что при переключении ключей создаётся вращающееся магнитное поле.
3.2.5 Система управления ВД
Система управления содержит силовые ключи, часто тиристоры или силовые транзисторы с изолированным затвором. Из них собирается инвертор напряжения или инвертор тока. Система управления ключами обычно реализуется на основе использования микроконтроллера. Наличия микропроцессора требует большое количество вычислительных операций по управлению двигателем.
3.2.6 Принцип работы ВД
Принцип работы ВД, основан на том, что контроллер ВД коммутирует обмотки статора так, чтобы вектор магнитного поля статора всегда был ортогонален вектору магнитного поля ротора. С помощью ШИМ контроллер управляет током, протекающим через обмотки ВД, т.е. вектором магнитного поля статора, и таким образом регулируется момент, действующий на ротор ВД. Знак у угла между векторами определяет направление момента действующего на ротор.
Коммутация производится так, что поток возбуждения ротора — Ф0 поддерживается постоянным относительно потока якоря. В результате взаимодействия потока якоря и возбуждения создаётся вращающий момент M, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.
В этом случае и результирующий вектор тока будет сдвинут и неподвижен относительно потока ротора, что и создаёт момент на валу двигателя.
В двигательном режиме работы МДС статора опережает МДС ротора на угол 90°, который поддерживается с помощью ДПР. В тормозном режиме МДС статора отстаёт от МДС ротора, угол 90° так же поддерживается с помощью ДПР.[www.autoteh.com.ua]
3.2.6 Управление двигателем
Контроллер ВД регулирует момент, действующий на ротор, меняя величину ШИМ.
В отличие от щёточного электродвигателя постоянного тока, коммутация в ВД осуществляется и контролируется с помощью электроники.
Распространены системы управления, реализующие алгоритмы широтно-импульсного регулирования и широтно-импульсной модуляции при управлении ВД.
Система, обеспечивающая самый широкий диапазон регулирования скорости — у двигателей с векторным управлением. С помощью преобразователя частоты осуществляется регулирование скорости двигателя и поддержание потокосцепления в машине на заданном уровне.
Особенность регулирования электропривода с векторным управлением — контролируемые координаты, измеренные в неподвижной системе координат преобразуются к вращающейся системе, из них выделяется постоянное значение, пропорциональное составляющим векторов контролируемых параметров, по которым осуществляется формирование управляющих воздействий, далее обратный переход.
Недостатком этих систем является сложность управляющих и функциональных устройств для широкого диапазона регулирования скорости.
3.3 Достоинства и недостатки ВД
3.3.1 Достоинства и недостатки ВД
В последнее время, этот тип двигателей быстро приобретает популярность, проникая во многие отрасли промышленности. Находит применение в различных сферах использования: от бытовых приборов до рельсового транспорта.
ВД с электронными системами управления часто объединяют в себе лучшие качества бесконтактных двигателей и двигателей постоянного тока.
3.3.2Достоинства
Высокое быстродействие и динамика, точность позиционирования
Широкий диапазон изменения частоты вращения
Бесконтактность и отсутствие узлов, требующих техобслуживания — бесколлекторная машина
Возможность использования во взрывоопасной и агрессивной среде
Большая перегрузочная способность по моменту
Высокие энергетические показатели (КПД более 90 % и cosφ более 0,95)
Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
Низкий перегрев электродвигателя, при работе в режимах с возможными перегрузками
3.3.2 Недостатки
Относительно сложная система управления двигателем
Высокая стоимость двигателя, обусловленная использованием дорогостоящих постоянных магнитов в конструкции ротора
Во многих случаях оказывается более рациональным применение асинхронного двигателя с преобразователем частоты.
... на педаль газа до упора. Высоковольтный электромотор гибридной силовой установки представляет собой сложную и одновременно компактную комбинацию электромотора и электрогенератора. Гибридная технология Немного подробнее о принципах работы гибридной силовой установки. 1. Начало движения При трогании с места и движении на малых скоростях используются лишь электромоторы. 2. Нормальный режим ...
... схемы могут быть электрические (на основе электрохимических аккумуляторов); механические (на основе пневматических аккумуляторов); инерционные (маховик). Устройство и принцип работы гибридов Гибридная машина имеет: обычный бензиновый двигатель, либо турбодизель с непосредственным впрыском. Дизельные силовые агрегаты используют неохотно, так как их основные проблемы – выбросы сажи и ...
... , для снижения экологической нагрузки на окружающую среду от автотранспорта очень важно поддержание в течение всего срока службы экологических параметров, заложенных заводом-изготовителем. 2. Основные направления повышения экологической безопасности автомобилей. Транспорт - важное условие функционирования общественного производства и жизни людей. Пассажиропотоки в городах растут быстрее, ...
... , перспективы использования вариоколес для городских автобусов, и лишь частично упомянуты эти перспективы для других видов транспортных средств. В частности, особые удобства и перспективы представляют вариоколеса для автомобилей, тракторов и тягачей, имеющих большие колеса, например, крупных самосвалов, тягачей, бульдозеров, скреперов и т.д.). Крутящий момент, передаваемый вариатором, зависит от ...
0 комментариев