2. Межпредметные связи в обучении предметам естественно-математического цикла
Предметы естественно-математического цикла дают учащимся знания о живой и неживой природе, о материальном единстве мира, о природных ресурсах и их использовании в хозяйственной деятельности человека. Общие учебно-воспитательные задачи этих предметов направлены на формирование политехнических знаний и умений учащихся, всестороннее гармоническое развитие личности. На основе изучения общих законов развития природы, особенностей отдельных форм движения материи и их взаимосвязей учителя формируют у учащихся современные представления о естественнонаучной картине мира. Эти общие задачи успешно решаются в процессе осуществления межпредметных связей, в согласованной работе учителей.
Изучение всех предметов естественнонаучного цикла связано с математикой.
Математика дает учащимся систему знаний и умений, необходимых в повседневной жизни и трудовой деятельности, а также важных для изучения смежных дисциплин (физики, химии, черчения, технологии и др.).
На основе знаний по математике у учащихся формируются общепредметные расчетно-измерительные учения. Изучение математики опирается на преемственные связи с курсами природоведения, физической географии, технологии. При этом раскрывается практическое применение получаемых учащимися знаний и умений, что способствует формированию у учащихся научного мировоззрения, представлений о математическом моделировании как обобщенном методе познания мира.
Последовательность расположения тем курса алгебры VII-IX классов обеспечивает своевременную подготовку к изучению физики. При изучении, например, равноускоренного движения используются сведения о линейной функции (IX класс), при изучении электричества – сведения о прямой и обратной пропорциональной зависимости (VIII класс). Решение уравнений, неравенств подготавливает учащихся к восприятию важнейших понятий курса информатики (алгоритм, программа и др.). Аксиоматическое построение курса геометрии VII-IX классов создает базу для понимания учащимися логики построения любой научной теории, изучаемой в курсах физики, химии, биологии. Знания по геометрии широко применяются при изучении черчения. Технологии, астрономии, физики. Так, для изучения механики необходимо владение векторными и координатным методами, для изучения оптики – знаниями о свойствах симметрий в пространстве и т.д. Привлечение знаний о масштабе и географических координатах из курса физической географии, о графическом изображении сил, действующих по одной прямой, из курса физики VII класса позволяет на уроках математики наполнять конкретным содержанием геометрические абстракции. Применение компьютеров на уроках математики целесообразно для проведения визуальных исследований, математических опытов, создания «живых картин» (например, для изображения на экране процесса последовательного приближения к окружности правильных вписанных многоугольников), а также для вычислительных работ. Связи математики с черчением, физикой, основами информатики и вычислительной техники развивают у учащихся политехнические знания и умения, необходимые для современной конструкторской и технической деятельности.
Развитию экономического мышления учащихся способствуют задачи с экономической тематикой, связанные с технологией.
В программах и учебниках усиливается математизация курсов физики и химии, при изучении физики целенаправленно применяются понятия пропорции, вектора, производной, функций, графиков и др. Так, движение рассматривается как производная функции координаты от времени, а ускорение – как производная скорости от времени при равноускоренном движении.
2.1 Осуществление связи с математикой в обучении физике
Математические приемы в физике учитель использует весьма часто:
- для выражения законов в общей и точной форме;
- для вывода тех или иных закономерностей из некоторых теоретических предпосылок;
- для преобразований выведенных формул в другие;
- для нахождения таких величин, измерение которых непосредственно невозможно;
- при разнообразных расчетах и решении задач.
Математический язык при изучении физики неизбежен как средство изящнейшего выражения законов и кратчайшего выражения законов из опытных исследований, для теоретического обоснования ряда основных положений.
Математикой учителю широко приходится пользоваться при решении физических задач. С самого начала изучения курса физики учащиеся приучаются к пользованию математическими символами и к буквенным формулам. После изучения определенного курса математики учащиеся без труда воспринимают, что математическая формула служит для более краткой, сжатой записи соотношения между физическими величинами, а затем и для более удобного производства вычислений.
Конечно, учителю приходится приучать учащихся вкладывать в математические обозначения реальное содержание физического смысла.
В старших классах роль математики в преподавании физики значительно повышается. Здесь, наряду с экспериментальным изучением физических явлений, учитель физики может при исследовании физических явлений широко применять и математический анализ, поскольку это возможно по уровню математической подготовки учащихся.
Например, в курсе физики X класса при изучении темы «Гармонические колебания» учащиеся уже знают из курса алгебры за IX класс, как связаны между собой ускорение и координата, скорость и координата, т.е., что мгновенная скорость представляет собой производную координаты по времени, а ускорение – вторая производная координаты по времени.
Отсюда делается вывод: согласно этому уравнению при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.
Далее учитель опирается на математическое положение о том, что функция синус и косинус обладают тем свойством, что вторая производная функции пропорциональна самой функции, взятой с противоположным знаком. Значит, координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса. И отсюда дается определение гармонических колебаний. Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями. Затем гармонические колебания записываются с помощью косинуса и синуса. Смещение колеблющейся точки в любой момент времени:
... ценностных приоритетов в определении целей и содержания, форм и методов построения учебной деятельности учащихся. Одно из направлений методического обновления уроков в начальных классах – конструирование интегрированных уроков и проведение их на основе интеграции учебного материала с нескольких предметов, объединённого вокруг одной темы. Это междисциплинарная форма учебного процесса, которая ...
... признаки слова, наблюдать, как видовое понятие соотносится с родовым. Все это дается в интересной форме (52,13). Так же нами проводились наблюдения исследовательской работы по использованию интегрированных уроков в процессе обучения младших школьников чтения. Приступая к работе по изучению и исследованию опытов интегрированных уроков мы исходили из гипотезы, что если учебный материал по курсу ...
... можно отнести к среднему звену школы. Однако направлением данной работы является изучение возможностей интеграции в начальном звене. Так, как же обстоят дела с проблемой интегрированных уроков в начальных классах? Данная проблема в начальной школе имеет свои трудности, но в то же время есть факторы, облегчающие её решение, по сравнению со средней школой. С одной стороны, в начальной школе мало ...
... где совокупность знаний, умений и навыков необходима для успешной профессиональной деятельности учителя географии. Методология преподавания географии в профильных классах на современном этапе развития российского образования претерпевает кардинальные изменения. Предметное содержание современной школы применяющей инновационные технологии в обучении географии замещаются на новые целевые установки ...
0 комментариев