3. Объяснение нового материала.
Преподаватель: Сущность метода пересечений состоит в следующем:
Задачу сводят к построению одной точки (основной элемент построения), которая удовлетворяет двум условиям a1 и a2.
Пусть Ф1 – множество точек, удовлетворяющих условию a1, а Ф2 – удовлетворяющих a2. Тогда точка x будет являться пересечением двух множеств точек Ф1 и Ф2. Чтобы построить точку x необходимо, опустив условие a2, построить множество точек Ф1, удовлетворяющих условию a1, затем, опустив условие a1, построить множество точек Ф2, удовлетворяющих a2. Пересечение этих двух множеств точек и будет искомый элемент x.
Рассмотрим пример:
Задача 1 (решается вместе с преподавателем)
Построить окружность данного радиуса r, проходящую через данную точку А и касающуюся данной прямой d.
Анализ. Предположим, что задача решена и окружность (О, r) построена.
Так как радиус этой окружности дан, то мы сможем её построить, если будет построен её центр О. Точка О удовлетворяет двум условиям:
а) r(О, r) = r;
б) r(O, d) = r.
Условие а) определяет фигуру S (A, r), а условие б) d1 и d2 – такие прямые, что r(d1, d) = r(d, d2) = r
Построение:
1) S (A, r);
2) прямые d1 и d2:r(d1, d) = r(d, d2) = r;
3) ОÎS (A, r) Ç {d1, d2};
4) S (O, r).
Доказательство:
а) ОÎS (A, r) => AÎ S (O, r);
б) ОÎ{d1, d2} => r(O, d) = r => S (O, r) касается прямой d.
Исследование:
Построения 1 и 2 всегда выполнимы. Рассмотрим построение 3.
Здесь возможны три случая:
а) r(А, d) < 2r => Фигура S (A, r) Ç {d1, d2} состоит из двух точек;
Задача имеет два решения.
б) r(А, d) = 2r => Фигура S (A, r) Ç {d1, d2} – точка, задача имеет одно решение.
в) r(А, d) > 2r => S (A, r) Ç {d1, d2} = Æ; задача не имеет решений.
Задача 2
Построить треугольник АВС, зная АС и радиусы окружностей, описанных около треугольников АВD и ADC, где AD высота.
Анализ: Известно, что радиус описанной окружности лежит на пересечении серединных перпендикуляров. Так как АС известно, радиусы окружностей известны, точка М – середина АD. Следовательно, можно построить и AD.
Построение:
1. АС, О2 – середина;
2. w1(О2, r2);
3. w2(A, r);
4. w3(O1, r);
5. CDÇw3 = B;
6. ABC – искомый;
Доказательство:
r1 – радиус описанной окружности треугольника АВD (по построению).
Исследование:
Радиусы описанных окружностей должны быть равны половине гипотенузы. Решение единственное.
4. Домашнее задание
Оставшиеся задачи и предложенная теория.
Занятие 4
Тема: Решение задач на построение алгебраическим методомЦель: Сформировать умение строить отрезки по данным формулам.
Оборудование: Циркуль, линейка.
План-коспект занятия:
1. Организационный момент.
2. Объяснение нового материала
Преподаватель: При решении задач алгебраическим методом приходится решать следующую задачу:
Даны отрезки a, b,…, l, где a, b,…, l – их длины. Выбрана единица измерения. Требуется построить отрезок х, длина которого х в этой же системе измерения выражается через длины a, b,…, l заданной формулой:
x = f (a, b,…, l)
Рассмотрим построение отрезков, заданных следующими простейшими формулами:
1) ;
2)
3) , где p и q – натуральные числа;
4) (построение отрезка – четвёртого пропорционального к данным трём).
5) ;
6) ;
7)
С помощью построений 1–7 можно строить отрезки, заданные более сложными формулами.
Рассмотрим пример: (решить вместе с преподавателем).
Пример 1. Пусть а, b, c и d – данные отрезки. Построить отрезок х, заданный формулой:
Решение: Построение отрезка выполняем в следующей последовательности:
1. Строим отрезок у, заданный формулой (для этого дважды выполняем построение отрезка, заданного формулой 5);
2. Строим отрезок z, заданный формулой
(построение отрезка, заданного формулой 6);
3. Строим отрезки u и v по формулам и
(построение отрезка по формуле 4);
... развитие логического мышления учащихся является одной из основных целей курса геометрии. При изучении геометрии развитие логического мышления учащихся осуществляется в процессе формирования понятий, доказательства теорем, решения задач. При изучении геометрических построений, прежде всего, приходится преодолевать трудности логического порядка. В условиях школы для преодоления этих трудностей ...
... учебник и задачник / А. П. Кисилев, Н.А. Рыбкин. – М.: Дрофа, 1995. 9. Изучение личности школьника / под. ред. Л.И. Белозеровой. – Киров, Информационный центр, 1991. 10. Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. – Киров: Изд-во ...
... задачи. Решение задач на построение сечений Работа по ознакомлению учащихся с проекционным чертежом может быть продолжена при обучении решению задач на построение сечений многогранников. Обучение решению задач на построение сечений можно проводить в следующем плане. Во-первых, первоначальное ознакомление учащихся с методами построения сечений следует проводить на метрически определенных ...
... способами. Проверяя правильность хода решения, мы тем самым убеждаемся и в правильности результата. Второй способ проверки результата заключается в получении того же результата применением другого метода решения задачи, поэтому полезно всегда задавать решающему вопрос: "Нельзя ли тот же результат получить иначе?" Иными словами, стоит последовать совету: "Решите задачу другим способом". Если при ...
0 комментариев