2. Произведение

 Событие C называется произведением A и B, если оно состоит из всех событий, входящих и в A, и в B.

Пример: С=А∙В (А- выпадет 3, В – выпадет нечетное число). Тогда С состоит в выпадении только числа 3, так как 3 является нечетным числом.

3.Противоположное

 Событие называется противоположным событию A, называется событие, состоящее в непоявлении события А. Обозначается противоположное событие символом .

Пример: Противоположными событиями являются промах и попадание при выстреле, или выпадении герба или цифры при одном подбрасывании монеты.

Вероятность событий

а)статистический подход.

Рассмотрим некоторое количество испытаний, в результате которых появилось событие А. Пусть было произведено n испытаний, в результате которых событие А появилось ровно m раз. Тогда отношение - называют относительной частотой.

Также при большом количестве повторений испытания частость событий мало изменяется и стабилизируется около определенного значения, а при небольшом количестве повторений она может принимать различные значения. Каждое такое значение в конкретном случае принято называть вероятностью события А и обозначают Р(А).

Так как n всегда больше либо равно N, то вероятность заключена в интервале: .

Примером может служить выпадение герба или цифры при бросании монеты, которое является простым и наглядным испытанием. Практика человека говорит о том, что при большом числе бросаний примерно в 50% испытаний выпадет герб, а в 50% – цифра. А это уже определенная закономерность. Здесь нас интересует не результат отдельного подбрасывания, а то, что получится после многократных подбрасываний.

б)классическое определение.

В некоторых случая вероятности событий могут быть легко определены исходя из условий испытаний. Пусть испытание имеет n возможных исходов, то есть событий, которые могут появиться в результате данного испытания. При каждом повторении возможно появление только одного из данных исходов (то есть все n исходов несовместны). Кроме того, по условиям испытания нельзя сказать какие исходы появляются чаще других, то есть все исходы являются равновозможными. Допустим теперь что при n равновозможных исходах интерес представляет событие А, которое появляется только при m исходах и не появляется при остальных n-m исходах. И принято говорить, что в данном испытании имеется n случаев, из которых m благоприятствуют появлению события А. В таком случае вероятность можно вычислить, как отношение числа случаев благоприятствующих появлению события А (т.е. m), к общему числу всех исходов n: .

Пример 1. Из колоды с 36 перемешанными картами наудачу извлекается одна карта. Извлечение каждой карты из 36 является равновозможным событием. Поэтому вероятность извлечения "короля" составляет 4/36 = 1/9, карты выбранной масти – 9/36 = 1/4, карты выбранного цвета – 18/36 = 1/2.

Пример 2. Бросают две игральные кости. Требуется найти вероятность того, что сумма очков делится на 5. Возможные суммы очков, делящиеся на 5, равны 5 и 10. Событию "сумма очков равна 5" благоприятствуют события (1; 4), (2; 3), (3; 2), (4; 1), а событию "сумма очков равна 10" – события (4; 6), (5; 5), (6; 4). Таким образом, число благоприятствующих исходов равно 7, общее число равновозможных исходов – 6 " 6 = 36, поэтому вероятность события "сумма очков делится на 5" будет 7/36.

Пример 3. Вероятность извлечения белого шара (событие Б) из урны, содержащей три черных и четыре белых шара: p(Б) = 4/7.

Занятие 2

1.  В 9 классе 10 учебных предметов. Сколькими способами можно поставить в среду первый и второй уроки?

2.  Для составления двух команд из 40 человек надо выбрать капитанов команд. Каким числом способов это можно сделать?

3.  На три призовых места претендуют Вася, Дима и Коля. Каким числом способов могут распределиться призовые места?

4.  Сколько существует трехзначных чисел, оканчивающихся тройкой?

5.  В партии 10 лотерейных билетов выигрышными являются 5. Приобретено 3 билета. В скольких случаях среди них есть хотя бы один выигрышный?

6.  Четыре футболиста, четыре хоккеиста и два баскетболиста хотят сфотографироваться, стоя в один ряд, но так чтобы представители одного вида спорта стояли рядом. Каким числом способов они могут сделать это?

7.  В некотором царстве не было двух жителей с одинаковым набором зубов. Каково максимальное количество жителей этого государства?

8.  В урне лежат 10 жетонов с числами 1, 2, 3, 4, …, 10. Из нее вынимают три жетона. Во скольких случаях сумма написанных на них чисел равна 9? Не меньше 9.

Занятие 3

1.  Сколькими способами можно разложить в два кармана пять купюр достоинством в 10, 50, 100, 500 и 1000 рублей?

2.  Из десяти волейбольных мячей, обозначенных цифрами от 1 до 10, нужно выбрать пять мячей так, чтобы среди выбранных был элемент мяч с номером 5. Сколькими способами это можно сделать?

3.  Сколько можно составить пятибуквенных слов из 7 гласных и 25 согласных букв, если гласные и согласные должны чередоваться?

4.  Сколькими способами можно разбить 20 футболистов на две команды так, чтобы одна содержала 3 человека, а другая 15 ?

5.  Во скольких девятизначных числах все цифры различны?

6.  Сколько различных пятизначных чисел можно записать из цифр числа 273485961 так, чтобы четные и нечетные цифры в числе чередовались?

7.  Двадцать различных книг отдано двум продавцам. Сколькими способами они могут распределить, если все книги могут быть отданы одному продавцу?

Занятие 4

1.  Брошены две игральные кости. Найти вероятность того, что: а) сумма выпавших очков равна семи; б) сумма выпавших очков равна 8, а разность четырем; в) сумма выпавших очков равна восьми, если известно, что их разность равна четырем; г) сумма выпавших очков равна пяти, а произведение – четырем?

2.  В ящике имеется 10 одинаковых деталей, помеченные номерами 1, 2, …, 10. Наудачу извлечены шесть деталей. Найти вероятность того, что среди извлеченных деталей окажутся: а) деталь №1; б) детали №1 и №2.

3.  Какова вероятность того, что из шести отмеченных чисел в карточке «Спортлото» (игра из 49) k чисел будут выигрышными.

4.  Известно, что среди 40 участников имеются 10 мастеров спорта. Среди всех участников случайным образом выбрали первую пятерку, найдите вероятность, что в этой пятерке присутствуют ровно 2 мастера спорта.

5.  На карточках написаны буквы: А, З, И, К, Л, Т, У, У, Ф, Ь. Вынимают наугад одну карточку за другой и раскладывают в том порядке в каком они были вынуты. Найти вероятность того, что на карточках будет написано слово ФИЗКУЛЬТУРА.

6.  Во всероссийском дне бега каждому участнику присваивался определенный четырехзначный номер. И была проведена акция всем тем у кого на номере встречаются два раза цифра 7 получают в подарок кружку. Определите сколько кружек должен приготовить спорткомитет.

Занятие 5

Приведем основные правила, позволяющие определить вероятность появления сложного события, состоящего из более простых событий, вероятность которых нам известна.

1.Вероятность достоверного события равна единице: P(E)=1.


Информация о работе «Организация и содержание элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля»
Раздел: Педагогика
Количество знаков с пробелами: 138817
Количество таблиц: 24
Количество изображений: 10

Похожие работы

Скачать
790698
3
0

... ; технологическая функция имеет подфункции экономии учебного времени и учебного материала, устранения его дублирования и т.д. ГЛАВА 4. СОДЕРЖАНИЕ ИСНТРУМЕНТАЛЬНО-МЕТОДОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПЕДАГОГИЧЕСКОЙ ИНТЕГРАЦИИ 4.1. Типология интегративно-педагогического исследования В связи с поднимаемой в данном параграфе проблемой большой интерес вызывает монография В.М.Полонского "Оценки ...

Скачать
106163
7
10

... общего, начального и среднего профессионального образования, обеспечивающей наиболее полную реализацию интересов и образовательных потребностей учащихся. Таким образом, можно выделить несколько вариантов организации профильного обучения. 1)         Модель внутришкольной профилизации В этой модели общеобразовательное учреждение может быть однопрофильным и многопрофильным. 2)   Модель сетевой ...

Скачать
367666
11
3

... упражнения нормализуют деятельность желудочно-кишечного тракта: желудочное и кишечное сокоотделение, активность пищеварительных ферментов, моторную активность и т.д. Регулярные занятия физической культурой, сопровождаемые потоотделением, не только совершенствуют терморегуляцию, но и обеспечивают систематический вывод из организма образовавшихся в процессе жизнедеятельности шлаковых веществ. ...

Скачать
183863
11
3

... . В современном мире, чтобы быть профессионально компетентным, педагога должен постоянно учиться, заниматься самообразованием и самореализовываться в педагогической деятельности. Поэтому при формировании профессиональной компетентности будущего педагога, необходимо вести деятельность по двум направлениям: подготовке студентов как будущих педагогов и работа с преподавателями. Учитывая сложность и ...

0 комментариев


Наверх