1.6 Организация обучения математике в основных профилях
Согласно [20] можно выделить несколько групп основных профилей, для которых математика изучается в наиболее приемлемом для этих профилей объёме.
Естественно-математический профиль: математика изучается в профильном курсе в течение 12 часов в 2 недели.
Технологический профиль: математика изучается в профильном курсе в течение 10 часов в 2 недели.
Социально-экономический профиль: математика изучается в базовом общеобразовательном курсе в течение 8 часов в 2 недели.
Гуманитарный профиль: математика изучается в базовом общеобразовательном курсе в течение 6 часов в 2 недели.
Универсальное обучение (непрофильные классы и школы): математика изучается в базовом общеобразовательном курсе в течение 8 часов в 2 недели.
Охарактеризуем название и краткое содержание элективных курсов для каждого из трёх профилей, опираясь на изученную в ходе исследования литературу.
Физико-математический профиль:
1. «Функции и графики» (10–11 классы): исследование функций методами математического анализа; касательная к графику функции; асимптоты; представление о выпуклости и вогнутости графиков; исследование функции с помощью второй производной; использование касательной и свойств функции при решении уравнений и неравенств.
2. «Элементы математической логики»: высказывания; операции над высказываниями; отрицание; законы логики; кванторы; неравенства; тождества; равносильность; математические теоремы, их виды; логическая структура теорем; необходимы и достаточные условия.
3. «Задачи с параметром»: задачи, приводящие к исследованию корней квадратного трёхчлена; задачи о расположении корней квадратного трёхчлена; некоторые уравнения и неравенства, решение которых основано на использовании свойств квадратного трёхчлена; уравнения и неравенства, решение которых основано на использовании монотонности и экстремальных свойств входящих в них функций; нестандартные по формулировке задачи, связанные с уравнениями и неравенствами: нахождение числа корней, определение целочисленных корней и т.д.; уравнения и неравенства с параметрами, аналитические и графические методы их решения.
Гуманитарный профиль:
1. «Замечательные теоремы и факты геометрии»: теорема Пифагора, различные способы её доказательства и её роль в геометрии; обобщения теоремы Пифагора; теоремы Чевы и Менелая; Теоремы Паппа и Дезарга; теорема Паскаля; теорема Птолемея.
2. «Великие русские учёные-математики»: Софья Ковалевская, Пафнутий Львович Чебышев и др.
3. «Элементы математической логики»: высказывания; операции над высказываниями; отрицание; законы логики; кванторы; неравенства; тождества; равносильность; математические теоремы, их виды; логическая структура теорем; необходимы и достаточные условия.
Социально-экономический профиль:
1. «Элементы комбинаторики, теории вероятностей и статистики»: бесформульная комбинаторика; основные понятия комбинаторики: перестановки, размещения, сочетания; задачи, решаемые с использованием формул комбинаторики; бином Ньютона; треугольник Паскаля; случайное событие; виды событий; алгебра событий; вероятность события; теоремы о вероятности объединения и пересечения событий; схема испытаний Бернулли; статистические характеристики: среднее арифметическое, размах, мода, медиана; статистические исследования: сбор и группировка статистических данных, наглядное представление статистической информации.
2. «Задачи с экономическим содержанием»: вычисление ставок процента в банке, определение начальных вкладов и наращенных сумм, исчисление налогов с населения и предприятий; простые и сложные проценты, расчёты банка с вкладчиками и заёмщика с банком, дисконтирование функций в экономике, их графики; средние и предельные издержки, оптимальные размеры производства, эластичность, нахождение наибольшего выпуска при заданных бюджетных ограничениях и наименьших бюджетных затрат при заданном выпуске; излишки потребителей и продавцов, исчисление налогов, последствия дотаций; использование показательных и логарифмических функции в банковской и налоговой системах, в рыночных конструкциях.
3. «Элементы математической логики»: высказывания; операции над высказываниями; отрицание; законы логики; кванторы; неравенства; тождества; равносильность; математические теоремы, их виды; логическая структура теорем; необходимы и достаточные условия [42].
Как видим, для различных профилей темы и содержание элективных курсов могут быть различны, а могут и совпадать.
1.7 Психолого-педагогические особенности обучения математике в классах основных профилей
При организации процесса обучения в профильных классах следует учитывать психолого-педагогические особенности учащихся того или иного профиля. Наиболее ярко эти особенности проявляются в математических и гуманитарных классах.
Учащиеся математических классов отличаются характером восприятия математической задачи (задачи в широком смысле слова). Способные к математике учащиеся, воспринимая задачу, сразу выделяют показатели, существенные для данного типа задач, величины, не существенные для данного типа задач, но существенные для данного конкретного варианта. То есть, для способных учащихся характерно формализованное восприятие математического материала, связанное с быстрым схватыванием в конкретной задаче, в математическом выражении их формальной структуры.
У учащихся математических классов преобладает абстрактно-логическое мышление, которое характеризуется:
à быстрым и широким обобщением (каждая конкретная задача решается как типовая);
à тенденциями мыслить свёрнутыми умозаключениями (при наличии очень чётко логически обоснованной канвы);
à большой подвижностью мыслительных процессов, многообразием аспектов в подходе к решению задач, лёгким и свободным переключением от одной умственной операции к другой, с прямого на обратный ход мысли;
à стремлением к ясности, простоте, рациональности, экономичности решения.
Память способных к математике учащихся имеет обобщённый характер: быстро запоминаются и прочно сохраняются типы задач и способы их решения, схемы рассуждений, доказательств, логические схемы.
Такие ученики отличаются хорошо развитыми пространственными представлениями, при решении ряда задач они могут обходиться без опоры на наглядные образы. В каком-то смысле логичность заменяет им «образность», они не испытывают трудностей при оперировании абстрактными схемами [23].
На уроке учащиеся математических классов предпочитают решение нестандартных, проблемных, исследовательских задач. Красоту математики видят в необычных, неожиданных решениях. Во время работы чаще действуют индивидуально [39].
Математический профиль согласно Концепции общего среднего образования [21] относится к курсу повышенного типа, обеспечивающему дальнейшее изучение математики и её применение в качестве элемента профессиональной подготовки. Это наиболее строгий и полный курс, ориентированный на учащихся, выбравших для себя деятельность, непосредственно связанную с математикой.
Целями изучения математики в этом профиле являются овладение учащимися необходимым объёмом конкретных математических знаний и формирование в этом процессе интеллектуальной культуры личности.
Отбор содержания по теме должен проводиться в соответствии с целями, которые ставятся при изучении математики в математическом профиле. А также при изучении материала целесообразно использовать методы работы на уроке, соответствующие этому профилю: эвристический, проблемное изложение, исследовательский. Наиболее привлекательна для школьников индивидуальная работа. Для более полного рассмотрения каких-либо вопросов можно использовать различные средства обучения, в том числе учебные пособия, дидактические материалы, таблицы, экранные средства, приборы, модели и инструменты.
Больше всего трудностей возникает при организации обучения математике в гуманитарных классах. Это связано с некоторыми особенностями познавательной деятельности учащихся-гуманитариев.
Для учеников гуманитарного профиля имеет значение содержание задачи, соответствие условия реальной действительности. Именно в этом плане проходит её первоначальное осмысление, лишь затем начинается перевод на математический язык. Учащиеся видят решение конкретной задачи, а не приём решения задач данного типа.
По сравнению с учениками других профилей у гуманитариев наблюдается низкая изобретательная способность при запоминании информации. Они стараются запомнить не способ доказательства теоремы, а всё доказательство полностью и, если забывают, то восстановить, чаще всего, не могут.
Учащиеся гуманитарных классов строят свои рассуждения развёрнуто, строго выполняют все предписания, если действуют по алгоритму.
У них наблюдается очень слабая связь между прямыми и обратными действиями, взаимно обратными понятиями (дифференцирование и интегрирование, прямая и обратная функция и др.), причём со временем она быстро исчезает вообще. Обратное действие (понятие) у них формируется как новое, без опоры на уже установленное прямое.
Учащиеся гуманитарных классов с интересом относятся к историческим справкам, фактам и др. В отличие от учеников математического профиля ученики гуманитарного профиля хорошо запоминают исторические сведения, с удовольствием готовят сообщения.
Восприятие красоты математики у гуманитариев направлено на её проявления в живой природе, в произведениях искусства, в конкретных математических объектах.
Из форм работы на уроке они предпочитают объяснение учителем нового материала, лабораторную работу, деловые игры, выполнение индивидуальных заданий с привлечением научно-популярной литературы. Из методов работы выбирают коллективные методы, дискуссии.
Исходя из интересов и особенностей познавательной деятельности учащихся гуманитарных классов, выделяются методические рекомендации по организации работы с ними:
à изложение материала необходимо вести на индуктивно-практической основе: от конкретных жизненных ситуаций к теоретическому обобщению, а от него – к применению;
à необходимо помогать учащимися за деталями увидеть сущность понятия, приёма или метода решения (доказательства), их структуру;
à тщательно вскрывать взаимосвязь между прямыми и обратными действиями, взаимно обратными понятиями, учить использовать её как для самопроверки, так и для уменьшения нагрузки на память;
à вырабатывать умение свёртывать рассуждения, избегать многословности;
à развивать умение восстанавливать формулы, доказательства, определения, для этого больше обращать внимание на способы их получения; там, где возможно, предлагать мнемонические правила запоминания содержательной части учебного материала;
à учащиеся, в основном, оперируют готовыми формулами, теоремами, поэтому затрудняются, когда способ решения сразу не виден или приходится комбинировать различные приёмы;
à при работе над задачей или теоремой необходимо ориентировать учащихся на рассмотрение всех возможных случаев расположения фигур;
à учить отличать признаки и свойства понятий, правильно их использовать;
à развивать умение восстанавливать формулы, доказательства, определения; для этого больше обращать внимание на способы их получения;
à тщательно вскрывать взаимосвязь между прямым и обратным действием, взаимно обратными понятиями;
à подбирать задачи, содержательная сторона которых соответствует реальной действительности;
à формы проведения уроков должны быть разнообразными: лекции, семинары, диспуты, диалоги и др.;
à лекции учителя дополнять сообщениями, докладами, рефератами учащихся;
à в содержании курса обязательно должны включаться богатые в эмоциональном отношении эпизоды истории развития математики;
à оптимально использовать принцип наглядности и художественную иллюстрацию, подкреплять теоретический материал примерами, моделями, подбирать задачи, содержательная сторона которых соответствует реальной действительности, отвечает интересам учеников, полнее использовать на уроках математики историко-научный материал [39], [22], [41];
Целями изучения математики в гуманитарном профиле являются умственное развитие школьника, знакомство с математикой как областью человеческой деятельности, формирование тех знаний и умений, которые необходимы для свободной ориентации в современном мире.
Итак, математика в гуманитарном профиле является курсом общекультурной ориентации. Этот курс рассчитан на учащихся, склонных рассматривать математику только как элемент общего образования и не предполагающих использовать её непосредственно в своей будущей профессиональной деятельности.
В классах экономического профиля учащиеся рассматривают математику как инструмент для решения прикладных задач. Если же говорить о особенностях мышления, то их мышление характеризуется прикладным стилем.
Учителю следует как можно чаще акцентировать внимание учащихся на универсальности математических методов, показывать на конкретных примерах их прикладной характер. Особый интерес вызовут примеры, иллюстрирующие применение метода в экономике.
Большое значение в процессе обучения математике имеет понимание школьниками практической значимости того или иного учебного материала. Поэтому при изучении любой темы необходимо сразу же очертить область, в которой этот материал может иметь фактическое применение.
Закрепление теоретических знаний следует осуществлять, в основном, в ходе решения математических и экономических задач.
Доказательство теорем (если при этом не демонстрируется какой-либо важный метод), как правило, имеет меньшую дидактическую значимость – это лишь очередное упражнение в строгом логическом рассуждении. Поэтому учащиеся могут не заучивать доказательства математических утверждений.
Для привития интереса к предмету очень важна мотивационная сторона обучения: каждое новое понятие или положение должно, по возможности, первоначально проявляться в задаче прикладного характера. Такая задача может убедить учащихся в необходимости и практической полезности изучения нового теоретического материала, показать, что математические абстракции возникают из задач, поставленных реальной действительностью. К тому же, это один из путей усиления мировоззренческой направленности обучения математике [23], [40].
Итак, экономический профиль, также как и математический профиль относится к курсу повышенного типа, обеспечивающему дальнейшее изучение математики и её применения в качестве элемента профессиональной подготовки. Но, в отличие от математического, ориентирован на учащихся с прикладным стилем мышления, выбравших для себя те области деятельности, в которых математика играет роль аппарата, специфического средства для изучения закономерностей окружающего мира. Поэтому, он должен быть построен с учётом того, что математика для таких учащихся является хотя и необходимым, но не самым важным предметом.
Изучение математики в экономическом профиле преследует такие цели:
1. Овладение изучения закономерностей окружающего мира. деятельности, в которых математика играет роль аппарата, специфического средства конкретными математическими знаниями, позволяющими выработать представление о применении математики в профилирующей науке и достаточными для изучения в вузе соответствующего направления.
... курс «Решение уравнений и неравенств с использованием свойств функций» Глава II. Разработка элективного курса «Решение уравнений и неравенств с использованием свойств функций» §1. Методические основы разработки элективного курса Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и ...
... учащихся к ЕГЭ, учителя математики СОШ №26 г.Якутска используют перечень вопросов содержания (кодификатор) школьного курса математики, усвоение которых проверяется при сдачи единого государственного экзамена 2007г. Элективный курс по подготовке к Единому Государственному Экзамену основан на повторении, систематизации и углублении знаний полученных ранее. Занятия проходят в форме свободного ...
... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1. Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...
... список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие ...
0 комментариев