2.4. Определение реакций в кинематических парах группы Ассура (2-3)

Вычерчиваем схему группы (μl = 0.004 м/мм ) и прикладываем к звеньям группы все известные силы и моменты.

К звену 3: R43 = -R34 = 8765 Н; G3= 1373.4 Н; Fи3' = 375.2 Н. Вектор R43 прикладываем в точке D, развернув вектор R34 на 180˚.

К звену 2 прикладываем: G2= 882.9 Н; Fи2' = 481.5 Н.

В раскрытых кинематических парах прикладываем реакции. Реакцию R03 представляем в виде нормальной и касательной составляющих Rn03 и Rτ03 (Rn03 направим вдоль СD, а Rτ03 - перпендикулярно СD). Реакцию R12 представляем в виде нормальной и касательной составляющих Rn12 и Rτ12 (Rn12 направим вдоль АВ, а Rτ12 - перпендикулярно АВ)

Величину Rτ03 определим из уравнения моментов всех сил, действующих на звено 3, относительно точки В (центрального шарнира группы):

ΣMВ3(Fi) = -R43·h3 + Fи3'·h4 - G3·h5 + Rτ03·ВD = 0 ,

откуда

Rτ03 = (R43·h3 - Fи3'·h4 + G3·h5)/ ВD =

= (8765·19.04 – 375.2·8.25 + 1373.4·6.58)/62.5 = 2765.2 Н

Поскольку знак Rτ03  из уравнения получен положительным, значит предварительное направление этой составляющей реакции на листе выбрано верно.

Величину Rτ12 определим из уравнения моментов всех сил, действующих на звено 2, относительно точки В (центрального шарнира группы):

ΣMВ2(Fi) = G2·h6 + Fи2'·h7 - Rτ12·АВ = 0 ,

откуда

Rτ12 = (G2·h6 + Fи2'·h7)/ АВ =

= (882.9·28.52 + 481.5·15.9)/60 = 547.3 Н

Поскольку знак Rτ12  из уравнения получен положительным, значит предварительное направление этой составляющей реакции на листе выбрано верно.

Поскольку направления реакций Rn03 и Rn12 известны, то, применяя принцип Даламбера, записываем условие равновесия группы Ассура

Rn03 + Rτ03 + R43 + G3 +Fи3' + G2 + Fи2' + Rτ12 + Rn12 = 0 .

Выбрав масштаб μF = 50 Н/мм, строим план сил для группы 2-3, последовательно откладывая векторы сил и замыкая силовой многоугольник от точки пересечения направлений неизвестных реакций Rn03 и Rn12.

С учетом масштаба величины реакций

R12 = 189.6·50 = 9480 Н;

R03 = 153.6·50 = 7680 Н.

Применяя принцип Даламбера, записываем условие равновесия звена 3

R03 + R43 + Fи3 + G3 + R23 = 0 .

На построенном плане сил по данному векторному уравнению достраиваем недостающий вектор R23, соединяя конец вектора G3 с началом вектора R03. Определяем величину этой реакции

R23 = 186.4·50 = 9320 Н


2.5. Силовой расчет ведущего звена

Проводим силовой расчет ведущего звена.

Прикладываем в т. А реакцию R21 = 9480 Н, развернув вектор R12 на 180˚, а также уравновешивающую силу Fур перпендикулярно звену.

Величину уравновешивающей силы находим из уравнения моментов относительно т. O:

Fур·ОА - R21·h8 = 0,

откуда Fур = R21·h8/ОА = 9480·27.83/55 = 4796.9 H.

Выбрав масштаб μF = 50 Н/мм, строим план сил для звена 1 по уравнению Fур + R21 +R01 = 0, и определяем из плана сил величину реакции R01 = 163.5·50 = = 8175 Н.


2.6. Определение уравновешивающей силы по методу Н.Е.Жуковского

Для нахождения уравновешивающей силы по методу Жуковского строим план скоростей для положения 2 (φ1 = 60˚), повернутый на 90˚.

В соответствующих точках отрезков этого плана прикладываем все известные внешние силы, включая силы инерции и уравновешивающую силу, перенося их параллельно самим себе со схем групп Ассура.

Для нахождения уравновешивающей силы составляем уравнение моментов всех сил относительно полюса такого плана скоростей, рассматривая его, как жесткий рычаг:

пс·pе - Fи5·pе – Fи4'·h9+ G4·h10 - Fи3'·h11 + G3·h12 - Fи2'·h13 + G2·h14 + Fур·pa = 0 ,

откуда

Fур = (Рпс·pе + Fи5·pе + Fи4'·h9 - G4·h10 + Fи3'·h11 - G3·h12 + Fи2'·h13 - G2·h14)/pa =

= (5000·130.7 + 2304·130.7 + 941.4·139.86 – 1765.8·27.3 +

+ 375.2·92.91- 1373.4·27.3 + 481.5·54.79 – 882.9·115.8)/200 = 4798.0 Н

Погрешность Δ в определении Fур двумя методами составляет

Δ = [(FурКст - FурЖ)/ FурЖ]·100% =

[(4796.9 – 4798)/4798]·100% = 0.02%


Информация о работе «Проектирование и исследование механизма качающегося конвейера»
Раздел: Промышленность, производство
Количество знаков с пробелами: 21560
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
46082
0
0

... А. Черкудиновым (1959 г.), отразили состояние теории современного учения о механизмах. Одновременно И. И. Артоболевский начинает исследования в области теории механизмов машин автоматического действия: гидравлических, пневматических и гидропневматических. Для современных машин характерны вибрационные явления и существенное изменение массы в процессе работы. Чтобы учесть эти факторы, в большинстве ...

Скачать
150329
21
22

... организации должны представить в двухнедельный срок заключения. 1.8. Технические изыскания на площадке строительства. Технические изыскания выполняются с целью обеспечения решения основных задач проектирования предприятия. Технические изыскания состоят из следующих разделов: 1. В общем разделе приводится характеристика местности под намечаемое строительство, выкопировка из плана местности или ...

Скачать
101600
8
32

... -автомат с тепловым реле шт. 3 50,00 150,00 итого: 1450,00 Суммарные затраты 1769,58 При эксплуатации установки потребляется 5 кВтЧч электроэнергии, что составит 98 рублей. Установка для статической балансировки является исключительно лабораторным стендом и использоваться в качестве промышленной установки не может. Норма расходов на содержание ...

Скачать
79718
0
15

... вызовет динамические давления на подшипники А и В, равные соответственно (рис.2) QA= P1 a + L / L = P1 85 + 340 / 340 » 1,25P1 ; (8) QB = - P1 a / L = - P1 85 / 340 » - 0,25P1 . Если предположить, что статическая балансировка ротора будет выполнена абсолютно точно путем прикрепления корректирующей массы в плоскости балансировочного кольца, то тогда динамическое давления на подшипники ротора ...

0 комментариев


Наверх