5.2 Расчет быстроходного вала редуктора
Схема усилий, действующих на быстроходный вал представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:
где [τк]=(20…25)Мпа
Принимаем [τк]=20Мпа.
; мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа5 (ГОСТ6636-69):
мм.
Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
мм;
мм – диаметр под уплотнение;
мм – диаметр под подшипник;
мм – диаметр для заплечиков;
мм – диаметр вала-шестерни;
b1=22мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №101, у которого Dп=28мм; Вп=8мм [4,табл.К27].
Выбираем конструктивно остальные размеры:
W=14мм; lм=16мм; l1=25мм; l=60мм.
Определим размеры для расчетов:
l/2=30мм;
с=W/2+ l1+ lм/2=40мм – расстояние от оси полумуфты до оси подшипника.
Проводим расчет быстроходного вала на изгиб с кручением.
Рис.5 Приближенная конструкция быстроходного вала
Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4.
Определяем реакции в подшипниках в вертикальной плоскости.
ΣМ2y=0; RАy·0,06-Fr1·0,03=0
RАy= 60,7·0,06/ 0,03;
RАy= RВy=121Н.
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RАy·0,03;
М3у =3,6Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.6).
Определяем реакции в подшипниках в горизонтальной плоскости.
ΣМ4x=0; Fm1·0,1- RАx·0,06+ Ft1·0,03=0;
RАx= (130·0,1+ 166,7·0,03)/ 0,06;
RАx=300Н;
Рис.6 Эпюры изгибающих моментов быстроходного вала
ΣМ2x=0; Fm1·0,02- Ft1·0,03+ RВx·0,06=0;
RВx= (166,7·0,03- 130·0,02)/ 0,06;
RВx=40Н
Определяем изгибающие моменты:
М1х=0;
М2= -Fm2·0,04
М2х=-130·0,04;
М2х=-5,2Нм;
М3хсправа=-Fm1·0,1+RВх ·0,03;
М3хсправа==-130·0,1+40 ·0,03;
М3хсправа=-11,7Нм;
М3х=- RАх ·0,03;
М3х=- 300 ·0,03;
М3х=- 9;
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
Т1-1= Т2-2= Т3-3= T3=3,4Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм2.
Эквивалентный момент:
; ; Нм2.
... 281 59,4 -79% σF2 257 55 -78% 4. Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]: zΣ=2а/mn; ...
... и организации процесса контроля. Статус контроля В данном курсовом проекте техническим заданием предусмотрена разработка этапов процесса приемочного контроля детали редуктора цилиндрического соосного двухступенчатого двухпоточного – зубчатое колесо и активный контроль на операции шлифование отверстия. Методы активного и приемочного контроля взаимно дополняют друг друга, сочетаются. Активный ...
... для дефлекторных насадок равен 0, 8...0, 9. Половинчатые или щелевые насадки применяют, если нужно получить односторонний полив. Рис. 1 Рабочие органы дождевальных машин и установок: а, б, в и г — короткоструйные насадки: дефлекторная, половинчатая, щелевая, центробежная; е — еднеструйный и дальнеструйный дождевальные аппараты; 1—дефлектор; 2 — корпус; 3—верхняя Крышка; 4 — ...
0 комментариев