5.2 Расчет быстроходного вала редуктора

Схема усилий, действующих на быстроходный вал представлена на рис.2.

Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] σв=730Н/мм2;  Н/мм2; Н/мм2;  Н/мм2.

Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:

где [τк]=(20…25)Мпа

Принимаем [τк]=20Мпа.

; мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа5 (ГОСТ6636-69):

мм.

Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр для заплечиков;

мм – диаметр вала-шестерни;

b1=22мм.

Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №101, у которого Dп=28мм; Вп=8мм [4,табл.К27].

Выбираем конструктивно остальные размеры:

W=14мм; lм=16мм; l1=25мм; l=60мм.

Определим размеры для расчетов:

l/2=30мм;

с=W/2+ l1+ lм/2=40мм – расстояние от оси полумуфты до оси подшипника.

Проводим расчет быстроходного вала на изгиб с кручением.

Рис.5 Приближенная конструкция быстроходного вала

Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4.

Определяем реакции в подшипниках в вертикальной плоскости.

ΣМ2y=0; RАy·0,06-Fr1·0,03=0

RАy= 60,7·0,06/ 0,03;

RАy= RВy=121Н.

Определяем изгибающие моменты в характерных точках:

М=0;

М=0;

М= RАy·0,03;

М =3,6Нм2;

М=0;

Строим эпюру изгибающих моментов Му, Нм2 (рис.6).

Определяем реакции в подшипниках в горизонтальной плоскости.

ΣМ4x=0; Fm1·0,1- RАx·0,06+ Ft1·0,03=0;

RАx= (130·0,1+ 166,7·0,03)/ 0,06;

RАx=300Н;

Рис.6 Эпюры изгибающих моментов быстроходного вала

ΣМ2x=0; Fm1·0,02- Ft1·0,03+ RВx·0,06=0;

RВx= (166,7·0,03- 130·0,02)/ 0,06;

RВx=40Н

Определяем изгибающие моменты:

М=0;

М2= -Fm2·0,04

М=-130·0,04;

М=-5,2Нм;

М3хсправа=-Fm1·0,1+RВх ·0,03;

М3хсправа==-130·0,1+40 ·0,03;

М3хсправа=-11,7Нм;

М=- RАх ·0,03;

М=- 300 ·0,03;

М=- 9;

М=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

Т1-1= Т2-2= Т3-3= T3=3,4Нм;

T4-4=0.

Определяем суммарные радиальные реакции [4,рис 8.2]:

; ;

; Н;

; Н.

Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:

; ; Нм2.

Эквивалентный момент:

; ;  Нм2.


Информация о работе «Редуктор двухступенчатый соосный двухпоточный»
Раздел: Промышленность, производство
Количество знаков с пробелами: 26927
Количество таблиц: 8
Количество изображений: 11

Похожие работы

Скачать
27067
7
11

... 281 59,4 -79% σF2 257 55 -78% 4. Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]: zΣ=2а/mn; ...

Скачать
40289
11
4

... и организации процесса контроля. Статус контроля В данном курсовом проекте техническим заданием предусмотрена разработка этапов процесса приемочного контроля детали редуктора цилиндрического соосного двухступенчатого двухпоточного – зубчатое колесо и активный контроль на операции шлифование отверстия. Методы активного и приемочного контроля взаимно дополняют друг друга, сочетаются. Активный ...

Скачать
60840
2
6

... для дефлекторных насадок равен 0, 8...0, 9. Половинчатые или щелевые насадки применяют, если нужно получить односторонний полив. Рис. 1 Рабочие органы дожде­вальных машин и установок: а, б, в и г — короткоструйные насадки: дефлекторная, половинчатая, щелевая, центробежная; е — еднеструйный и дальнеструйный дождевальные аппараты; 1—дефлектор; 2 — корпус; 3—верхняя Крышка; 4 — ...

0 комментариев


Наверх