5.3 Расчет промежуточного вала
Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала из расчёта на чистое кручение
;
где [τк]=(20…25)Мпа [1,c.161]
Принимаем [τк]=20Мпа.
; мм.
С учетом того, что выходной конец промежуточного вала является валом-шестерней с диаметром выступов 24мм, принимаем диаметр вала под подшипник 25мм.
мм.
Намечаем приближенную конструкцию промежуточного вала редуктора (рис.7), увеличивая диаметр ступеней вала на 5…6мм
Рис.7 Приближенная конструкция промежуточного вала
dст=30мм;
х=8мм;
W=20мм;
r=2,5мм;
dв=28мм.
Расстояние l определяем из суммарных расстояний тихоходного и быстроходного валов с зазором между ними 25…35мм.
l=60+30+30=120мм.
l1=30мм; l2=30мм.
Предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по dп=25мм подшипник №105, у которого Dп=47мм; Вп=12мм [4, табл.К27].
Заменяем вал балкой на опорах в местах подшипников.
Рассматриваем вертикальную плоскость (ось у)
Определяем реакции в подшипниках в вертикальной плоскости.
åМСу=0;
-RDу·0,09+Fr1·0,03+Fr2·0,12=0
RDy=(368·0,03+60,7·0,12)/ 0,09;
RDy==204Н.
åМDу=0;
RCy·0,09- Fr1·0,06+ Fr2·0,03=0;
RCy=(368·0,06-60,7·0,03)/ 0,09;
RCy=225Н.
Назначаем характерные точки 1, 2, 3, и 4 и определяем в них изгибающие моменты:
М1у=0;
М2у=-RCy·0,03;
М2у=-6Нм;
М3услева=-RCy·0,09+Fr1·0,06;
М3услева=-16,6Нм
М3усправа= Fr2·0,03;
М3усправа= 11
М4у=0;
Строим эпюру изгибающих моментов Му, Нм (рис.8).
Определяем реакции в подшипниках в горизонтальной плоскости.
åМСх=0;
RDx·0,09-Ft1·0,03-Ft2·0,12=0;
RDx=( 166,7·0,03+ 1012·0,12)/0,09;
RDx=1404Н;
åМDх=0;
RCx·0,09+ Ft1·0,06-Ft2·0,03=0;
RCx=(1012·0,03+166,7·0,06)/ 0,09;
RCx=337Н.
Назначаем характерные точки 1, 2, 3 и 4 и определяем в них изгибающие моменты:
М1x=0;
М2x=-RCx·0,03;
М2x=-10Нм;
М3xслева= -RCx·0,09-Ft1·0,06;
М3xслева=-91Нм;
М3xсправа= Ft2·0,03;
М3xсправа=5Нм;
М4у=0.
Строим эпюру изгибающих моментов Му, Нм (рис.8)
Рис.8 Эпюры изгибающих и крутящих моментов промежуточного вала.
Крутящий момент
Т1-1=0;
Т2-2=-Т3-3=- T2/2=-4,3Нм;
Т4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм.
Эквивалентный момент:
; ; Нм.
Все рассчитанные значения сводим в табл.5.
Таблица 5 Параметры валов
R1, H | R2, H | MИ, Нм | MИэкв, Нм | |
Тихоходный вал | 2118 | 774 | 79 | 89 |
Быстроходный вал | 323 | 117 | 12 | 12,5 |
Промежуточный вал | 405 | 1419 | 92,5 | 93 |
... 281 59,4 -79% σF2 257 55 -78% 4. Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]: zΣ=2а/mn; ...
... и организации процесса контроля. Статус контроля В данном курсовом проекте техническим заданием предусмотрена разработка этапов процесса приемочного контроля детали редуктора цилиндрического соосного двухступенчатого двухпоточного – зубчатое колесо и активный контроль на операции шлифование отверстия. Методы активного и приемочного контроля взаимно дополняют друг друга, сочетаются. Активный ...
... для дефлекторных насадок равен 0, 8...0, 9. Половинчатые или щелевые насадки применяют, если нужно получить односторонний полив. Рис. 1 Рабочие органы дождевальных машин и установок: а, б, в и г — короткоструйные насадки: дефлекторная, половинчатая, щелевая, центробежная; е — еднеструйный и дальнеструйный дождевальные аппараты; 1—дефлектор; 2 — корпус; 3—верхняя Крышка; 4 — ...
0 комментариев