МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
Донецький електрометалургійний технікум
КУРСОВИЙ ПРОЕКТ
ПОЯСНЮВАЛЬНА ЗАПИСКА
КП. 5.090231.01. . .00. ПЗ
Проект складається з:
пояснювальної записки на аркушах
графічної частини на 1 аркуші
Проект розробив
(підпис, дата)
Керівник проекта
(підпис, дата)
2009 р.
ЗМІСТ
ВВЕДЕННЯ
1 ЗАГАЛЬНА ЧАСТНА
1.1 Коротка характеристика вертикально сверлійно-фрезерно-росточного напівавтомата 243ВМФ
1.2 Вимоги що пред'являються до приводу головного руху
1.3 Опис схеми електроприводу механізму головного руху верстата 243ВМФ2
2 РОЗРАХУНКОВА ЧАСТИНА
2.1 Вибір двигуна і розрахунок його механічних характеристик.
2.2 Розрахунок, вибір і перевірка силового тиристора.
2.3 Розрахунок параметрів схеми управління
2.4 Аналіз системи електроприводу на стійкість.
НОРМАТИВНІ ЗАСЛАННЯ
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
ВСТУП
Сучасне металообробне обладнання – це високо розвинуті машини. За конструкцією і призначенням важко знайти більш різноманітні машини ніж метало різальні верстати .
Створення оптимальної конструкції сучасного метало різального верстата, можливо тільки у разі автоматизації проектування, оскільки традиційний метод ручного проектування забезпечує лише створення працездатних конструкцій, але не оптимальних. Як відомо, заручного методу розрахунку і конструювання деталей і вузлів верстатів, робиться низько спрощень і не враховуються усі фактори, не розглядаються усі важливі варіанти конструкції . Застосування електронних обчислювальних машин (ЄОМ) дає змогу збільшити кількість факторів, які розглядаються і дає можливість досягти оптимальних рішень. Але бажаний ефект досягається в наслідок діалогу конструктора, якій володіє достатнім знанням в області розрахунку і конструюванні верстатів, і ЕОМ оскільки це дасть змогу розглянути значну кількість варіантів і вибрати оптимальні розміри і конструкцію.
Під час створення нових верстатів використовуються досягнення верстатобудівельної промисловості і наукових досліджень, а також суміжних областей техніки. Наприклад, на конструкцію верстата впливає створення нових типів електродвигунів (високо моментних, регулюваннях), поява нових датчиків положення , вдосконалення електрогідравлічної і оптичної апаратури , створення нових методів керування від спеціалізованих ЕОМ та інших.
Новостворювальні верстати мають бути суспільно доцільними , технічно і електрично вдосконаленні, економічними тощо. Вдосконалювання сучасних верстатів повинно забезпечувати підвищення швидкості робочіх і допоміжних рухів. Застосування композиційних матеріалів для різальних інструментів дає змогу вже сьогодні реалізовувати швидкості різання до 1500-2000 м/хв., а швидкість установочних переміщень до 20-30 м/хв..
У зв’язку зі зменшенням величин партій виробів , збільшенням гнучкості та скороченням термінів виконання замовлень переосмислюється питання усієї верстатобудівельної промисловості, а також створюється нова виробнича стратегія щодо комплексної обробки. Наприклад, токарні багато цільові верстати оснащуються іншим захватним шпинделем, який розташований напроти головного. Так з’являється можливість завершення обробки деталі з боку відрізання за одночасного початку обробки наступної деталі. Стійкою тенденцією є інтеграція фрезерної, зубонарізної,стругальної, свердлильної, та іншої обробки у технологічну токарну комірку. Системи часового програмного керування (ЧПК) такими верстатами дають можливість керувати 5-ма …10-ма координатними осями(а інколи і більше).
Вимоги до сучасних металоріжучих верстатів реалізується більшою мірою за допомогою електроприводу.
Багато цільові верстати забезпечують високий ступінь точності обробки деталей і продуктивність за постійністю технологічних баз що дає змогу підвищувати точність взаємного розташування оброблених поверхонь.[1]
1. ЗАГАЛЬНА ЧАСТИНА
1.1 Коротка характеристика вертикально сверлійно-фрезерно-росточного напівавтомата 243ВМФ
Верстати, оснащені ЧПУ і пристроєм автоматичної зміни інструменту, призначені для послідовного виконання великого числа різних технологічних операцій без переустановлення заготівок,називають багатоцільовими(МВ) . Завдяки такої конструкції верстатів істотно скорочується допоміжний час при обробці і зберігається мобільність до переналадки . Продуктивність багатоцільових верстатів в 3-8 разів вища, ніж універсальних верстатів. Допоміжний час зменшується завдяки автоматичній зміні інструменту, високій швидкості позиціонування робочих органів верстата на допоміжних ходах (15 м/хв.), скороченню часу пуску-зупинки і реверсування при застосуванні високомоментних мало інерційних двигунів постійного струму, наладці інструменту на розмір поза верстатом, виключено контрольних операцій і т.д. У сучасних верстатах час переналадки ще більш зменшується унаслідок застосування змінних інструментальних магазинів з наперед налагодженим на розмір ріжучим інструментом. Характерні особливості МВ наступні : оснащеність великим числом ріжучих інструментів, висока концентрація операцій (чорнових, на півчистових і чистових ), зокрема точіння, розточування, фрезерування, свердлення, зенкерування, розгортання, нарізування різьб, контроль якості обробки і др.; висока точність виконання чистових операцій (6-7-й квалітети ). МВ оснащують позиційними або контурними УЧПУ,які забезпечують безступеневих регулювання подачі і частоти обертання. Для систем управління характерні розвинена сигналізація, цифрова індикація положення вузлів верстата, різні форми адаптивного управління.
МВ - це в основному одношпиндельні верстати з револьверними і шпиндельними головками . Звичайно на МВ обробляють комплекти деталей, що йдуть на збірку вузла або машини. Приводи головного руху повинні забезпечувати регулювання швидкостей в широкому діапазоні (Rn=50/100, а іноді і до 200), враховуючи велике число різнохарактерних обробок, що виконуються на багатоцільових верстатах. Максимальна частота обертання досягає =3000/4000 (). Переважно в приводах головного руху використовують двигуни постійного струму з тиристорним управлінням з двома - трьома механічними ступенями, а іноді і без них [2].
В курсовому проекті розробляється електропривод головного руху вертикального сверлійно-фрезерно-розточувального напівавтомата 243ВМФ. Верстат призначений для комплексної обробки заготовок невеликих і середніх розмірів при підході інструменту з одного боку . На верстаті можна проводити свердлення, зенкерування, цекування, чорнове і чистове розточування, напівчистове і чистове фрезерування і нарізування різьблення мітчиками . Верстат побудований на базі координатний - розточувального верстата і має клас точності В : забезпечує відхилення відстаней між осями оброблених отворів 0,016 мм, відхилення діаметру отворів 0,01 мм. Найбільший діаметр свердлення 25 мм, найбільший діаметр розточування 160 мм; розміри робочої поверхні столу (ширина Х довжина) 320Х560 мм; число інструментів в магазині 30; число частот обертання шпинделя 21; межі частот обертання шпинделя 40-2500 ; число ступенів подач 30; межі подач по координатах Х’,Y’,Z 3,15-2500 мм/мін; швидкість швидкого переміщення по осях координат X’,Y’,Z 3000мм/хв.; габаритні розміри верстата 1590 Х 1640 Х 2620 мм. Компоновка, основні механізми і рухи у верстаті. Верстат має вертикальну компоновку і показаний на листі графічної частини. На станині 1 закріплена стойка 2. У верхній частині стійки розміщений привід головного руху - обертання шпинделя і редуктор подач по координаті Z гільзи шпинделя. По тих, що вертикальним направляють в стійці переміщається головка, шпинделя, 4(настановне переміщення). На стійці укріплений магазин3,з якого автооператор переносить інструмент в шпиндель. Верстат оснащений хрестовим координатним столом 5.По що горизонтальним направляє станини переміщаються в поперечному напрямі санчата (подача по координаті Y’), а в подовжньому напрямі по тих, що направляють санчат - стіл (подача по координаті X’)[3].
Кінематика верстата показана на (рис.1). Головний рух шпиндель VII одержує від асинхронного електродвигуна М1 (Р=2.2 кВт; n=1430 ) через двох ремінної варіатор var, триступінчату коробку швидкостей і зубчато- ремінну передачу z=31-31.При відхиленні швидкості при заданою програмою тахогенератор BR дасть команду на включення асинхронного електродвигуна (Р=0.08 кВт; n=1390 ), який через зубчаті пари z=17-49,25-49 і гвинт XIII з кроком Р=5 мм змістить вісь рухомих дисків варіатора, що і зрадить його передавальне відношення. Варіатор забезпечує регулювання швидкості (1:4) усередині кожного з трьох діапазонів одержуваних перемиканням блоку Б1 і у муфти . При включенні муфти від електромагніту постійного струму Э1 одержують верхній діапазон обертання, оскільки рух з валу III на вал V передається через зубчато- ремінну передачу z=30-30, минувши знижуючи передачі. Два нижні діапазони шпиндель одержує при перемиканні блоку Б1 (муфта відключена ) двома електромагнітами постійного струму (на схемі не показано). Шпиндель верстата 8 (рис.2) розміщений в гільзі 7 на спеціальних високо точних підшипниках затиск інструменту походить від пакету тарілчастих пружин 3 що діють на інструмент за допомогою шомполу 2, сполученого з байонетним замком 1. Зусилля пружин регулюється гайкою 4.Зуб планки 5, взаємодіючи із зубчатим колесом 6, закріпленим на шомполі 2, перешкоджає випадковому повороту байонета. Що крутить момент від шпинделя до інструменту передається повідцями розташованого на торці шпинделя .
Привід обертання шомполу призначений для розтиснення і затискання байонетного замку шомполу з інструментом в крайньому верхньому положенні гільзи, а також для обертання інструменту у разі неспівпадання провідних шпонок інструменту і шпинделя під час автоматичної зміни інструменту. Привід шомполу здійснюється від асинхронного електродвигуна М3 (Р=0.25 кВт; n=2700 ) через черв'ячний редуктор z=1-30 при включеній муфті . Двигун включається по команді мікроперемикача, розташованого на магазині, тільки в положенні автооператора під шпинделем. Муфта - запобіжна .
Привід подач гільзи шпинделя і переміщення головки, шпинделя, здійснюється від електродвигуна постійного струму М4 (Р=0.37 кВт; n=3000 ).Гильза одержує переміщення через двоступінчатий редуктор z=20-40,z=16-48-40-48 і гвинт кочення XVIII з кроком Р=6 мм, який сполучений з повзуном переміщення гільзи . Для забезпечення самогальмування пари гвинт-гайка кочення при віджиманні інструменту служить гальмо.
Переміщення головки, шпинделя, здійснюється від шліцьового валу XVI через втулку XIX і при включеній муфті через черв'ячну пару z=1-34 (муфта запобіжна ) і рейкову передачу. Муфта включається від механізму затиску головки гільза і шпиндель синхронно . При відключенні головка, шпинделя, зупиняється, а шпиндель продовжує перемішатися здійснюючи робочу подачу . На валу XVII встановлений круговий фотоелектричний датчик з дискретністю 0,01мм, який здійснює контроль переміщень гільзи і головки, шпинделя .
Швидкість швидкого переміщення головки, шпинделя, визначиться з виразу
Головка і гільза зрівнянні противагами.
Позиціонування за заданою програмою здійснюється подовжнім переміщенням столу і поперечним переміщенням солазак від електродвигунів постійного струму відповідно М5 і М6 (Р=0,37 кВт; n=3000 ). Рух передається через зубчаті ремені z=23-49, дві зубчаті пари на червячно- рейкові передачі з модулем m=10 мм. Подовжня подача столу в загальному вигляді визначається з виразу
Вимірювальні гвинти відліково-вимірювальних систем кінематично зв’язаними з приводними черв'яками через колесо z=22 на приводному волу ХХХ подовжнього переміщення і z=30 на валу ХХIV . Відлікова вимірювальна система верстата замкнута з індуктивними і фотоелектричними датчиками . Розглянемо принцип її дії на прикладі відлікової системи столу. Точний гвинт-якір з прямокутним різьбленням ХХХIII індуктивного датчика ІД пов'язаний з переміщенням робочого органу через черв'ячно-рейкову передачу, вал ХХХ, конічні пари z=22-22, z=22-22, колеса диференціала z=40, z=50,z=108 і колесо z=106. Виникаючий при переміщенні сигнал роз узгодження сприймається блоком управління БУ, що дає команди електродвигуну М7 типу РД-09 (Р=0,01 кВт; n=1200 ). Двигун, зменшуючи сигнал розузгодження довертає гвинт-якір ХХХIII через передачу z=34-68, диференціал і колесо z=106 відлікового гвинта. Унаслідок зворотнього зв'язку гвинт-якір обертається синхронно руху робочого органу. Відлік кута повороту кута якоря проводиться круговим фотоелектричним датчиком ФД. Виникаючий у фотодіодах електричний струм перетвориться електронним пристроєм ВУ в імпульси сприймані лічильником імпульсів СІ. Шах імпульсів фотоелектричного датчика відповідає 0,001 мм переміщення робочого органу ( дискретність відліку). Лічильник імпульсів формує в числовому вигляді повну інформацію про величину переміщення робочого органу і управляє відповідно електродвигуном М5 приводу подач столу. Затиск головки, шпинделя, столу, санчат і гільзи здійснюється автоматично за програмою від асинхронних електродвигунів через ряд зубчатих передач (на схемі не показані).
Механізм автоматичної зміни інструменту складається з інструментального магазина і автооператора з приводом. Механізм зручно розташований для обслуговування, час зміни інструменту складає близько 5 с. Цикл зміни інструменту. Магазин під час обробки подає інструмент в позицію завантаження-вивантаження. Автооператор повертається, захоплює інструмент, виносить його з магазина і перекидає до положення, коли осі шпинделя і інструменту паралельні. Гільза і головка, шпинделя, переміщаються у верхнє положення контрольоване мікроперемикачами; шомпол віджимає інструмент, але він залишається поки в байонетном замку. Автооператор захоплює відпрацьований інструмент, у цей момент починає обертатися шомпол і інструмент звільняється із замку, автооператор рухом вниз витягує інструмент з шпинделя. Потім автооператор повертається на 180 і вставляє черговий інструмент в шпиндель. Далі автооператор здійснює всі рухи в зворотній послідовності, вставляючи відпрацьований інструмент в своє кубло. Одночасно відбувається затиск нового інструменту в шпинделі. Оскільки шомпол обертається, то зуб інструменту западає в байонет, а що ведуть виступи шпинделя - в пази інструментального облямовування. Інструмент фіксується в шпинделі, а шомпол замикає байонетний замок і зупиняється. Спеціальна схема контролю перевіряє положення інструменту в шпинделі. Магазин виконаний у вигляді барабана з втулками, в які встановлюють інструмент. Втулки оберігають хвостовики облямовувань від пилу і грязі. Облямовування кріпляться в магазині за допомогою пружин. З барабаном кінематично пов'язані три кодові диски, пелюстки яких проходять крізь прорізи безконтактних кінцевих вимикачів, закріплених на корпусі. Вихідні сигнали вимикачів, закодовані двійково-десятковому коді, забезпечують вибір позиції барабана, тобто кодується кубло магазина. Обертання магазина здійснюється від електродвигуна М8 (Р=0,18 кВт; n=2800 ) через черв'ячну передачу z=1-24, гвинт-вал XXX VII, зубчату пару z=51-34, передачі z=2-30, z=50-165, і вал XL, на якому розташований магазин. Рівняння кінематичного балансу запишемо з умови, що за один оборот гвинта-валу XXXVII магазин обернеться на 1 крок (1/30 обороту), оскільки в магазині 30 позицій: 51/34 2/30 50/165=1/30
При отриманні команди на пошук інструменту починає обертатися черв'ячне колесо z=24 з внутрішнім різьбленням. При цьому вал XXXVII переміщається уздовж своєї осі вліво або управо залежно від напряму обертання до тих пір, поки фіксатор 1 не вийде з подовжнього паза куркулька К1. При цьому гвинт-вал почне переміщатися в осьовому напрямі до тих пір, поки не спрацює мікроперемикач, що дає команду на зупинку електродвигуна. Автооператор за цикл зміни інструменту повинен виконати наступні рухи: поворот, осьове переміщення і перекидання. Від електродвигуна М9 (Р=0,12 кВт; n=2760 через черв'ячну пару z=-60, зубчаті пари z=20-30-157 одержує обертання вал XLIV з сидячими на ньому куркульками К2, К3, К4. На кожному кулачку дискового типа є замкнуті криві, що визначають переміщення автооператора. Від кулачка К2 за допомогою штовхача через вал-рейку XLV, рейкове колесо z=28 і зубчату пару z=59-36 автооператор повертається навколо центральної осі LII. Про т куркулька К3 через рейку і рейкове колесо z=27, вал XLVII, колеса z=67-67-46 одержує обертання порожнистий вал L, який за допомогою рейкового колеса z=46 переміщає рейку модулем m=1,5 і відповідно автооператор уздовж осі LII. Кулачок К4 через штовхач, рейку і рейкове колесо z=27, вал XLVIII і колеса z=31-43-43-58 здійснює поворот автооператора на 900 (перекидання).
0 комментариев