4. Потери тепла с охлаждающей водой по практическим данным принимаем равными 10 % от тепла, вносимого топливом и воздухом
В кВт.
5. Неучтенные потери определяем по формуле
В кВт.
Уравнение теплового баланса
.
Откуда
=5,46 м3/с.
Результаты расчетов заносим в таблицу
Таблица 1. Тепловой баланс методической печи
Статья прихода | кВт (%) | Статья расхода | кВт (%) |
Тепло от горения топлива . . . . . . . . Физическое тепло воздуха . . . . . . . . Тепло экзотермических реакций . . . . . . . . _____________________ Итого: | 114114 (83, 82) 17948,06 (13, 18) 4080 (3, 00)
________________________ 136142,06 (100, 0) | Тепло на нагрев металла . . . . . . . . . Тепло, уносимое уходящими газами Потери тепла теплопроводностью через кладку . . . . . Потери тепла с охлаждающей водой . . . . . . . . . . . Неучтенные потери __________________________ Итого: | 59820,2 (43, 94) 56602,83 (41, 16) 3908,5 (2, 87) 13206,16 (9, 70) 2604,43 (2, 33) ________________________ 136142,06 (100,0) |
Удельный расход тепла на нагрев 1 кг металла
кДж/кг.
2.5 Расчет рекуператора для подогрева воздуха
Исходные данные для расчета: на входе в рекуператор =0оС, на выходе =450оС. Температура дыма на входе в рекуператор =1050оС. Расход газа на отопление печи =5,46 м3/с. Расход воздуха на горение топлива м3/с. Количество дымовых газов на входе в рекуператор м3/с. Состав дымовых газов 10,6 % СО2; 16,8 % Н2О; 0,8 % О2 и 71,8 % N2.
Выбираем керамический блочный рекуператор. Материал блоков – шамот, марка кирпича Б-4 и Б-6. Величину утечки воздуха в дымовые каналы принимаем равной 10 %. Тогда в рекуператор необходимо подать следующее количество воздуха 29,8/0,9=33,1 м3/с.
Количество потерянного в рекуператоре воздуха
м3/с.
Среднее количество воздуха
м3/с.
Количество дымовых газов, покидающих рекуператор (с учетом утечки воздуха) равно
м3/с.
Среднее количество дымовых газов
м3/с.
Зададим температуру дымовых газов на выходе из рекуператора =650оС. При этой температуре теплоемкость дымовых газов
,
_____________________________
=1462 кДж/(м3.К)
Теплоемкость дыма на входе в рекуператор (=1050оС)
_____________________________
=1,538 кДж/(м3.К)
Теперь , где =1,3583 кДж/(м3.К) – теплоемкость воздуха при =650оС.
Решая это уравнение относительно , получим =651,3оС651оС.
В принятой конструкции рекуператора схема движения теплоносителей – перекрестный ток. Определяем среднелогарифмическую разность температур для противоточной схемы движения теплоносителей
;
о.
Найдя поправочные коэффициенты
и ,
, тогда оС.
Для определения суммарного коэффициента теплопередачи примем среднюю скорость движения дымовых газов =1,2 м/с, среднюю скорость движения воздуха =1,5 м/с.
Учитывая, что эквивалентный диаметр воздушных каналов равен =0,055 м =55 мм, находим значение коэффициента теплоотдачи конвекцией на воздушной стороне
=14 Вт/(м2.К).
Учитывая шероховатость стен, получим
Вт/(м2.К).
Коэффициент теплоотдачи на дымовой стороне находим по формуле
.
Учитывая, что гидравлический диаметр канала, по которому движутся дымовые газы равен =0,21 м, находим коэффициент теплоотдачи конвекцией на дымовой стороне
=6,4 Вт/(м2.К),
или с учетом шероховатости стен
Вт(м2.К).
Величину коэффициента теплоотдачи излучением на дымовой стороне определяем для средней температуры дымовых газов в рекуператоре, равной
оС.
Среднюю температуру стенок рекуператора принимаем равной
оС.
Эффективная длина луча в канале равна
м.
При =850,5оС находим
=0,05; =0,035; =1,06.
.
При =537,75оС, .
Учитывая, что при степени черноты стен рекуператора , их эффективная степень черноты равна , находим коэффициент теплоотдачи излучением
Вт/(м2.К).
Суммарный коэффициент теплоотдачи на дымовой стороне равен
Вт/(м2.К).
При температуре стенки =537,75оС коэффициент теплопроводности шамота равен
Вт/(м.К)
С учетом толщины стенки элемента рекуператора =0,019 м находим суммарный коэффициент теплопередачи по формуле
Вт/(м2.К),
где и – соответственно основная поверхность теплообмена и оребренная, м2.
При , Вт/(м2.К).
Определяем поверхность нагрева и основные размеры рекуператора. Количество тепла, передаваемого через поверхность теплообмена, равно
кВт.
По следующей формуле находим величину поверхности нагрева рекуператора
м2.
Так как удельная поверхность нагрева рекуператора, выполненного из кирпичей Б=4 и Б=6, равна =10,3 м2/м3, можно найти объем рекуператора
м3.
Необходимая площадь сечений для прохода дыма равна
м2.
Учитывая, что площадь дымовых каналов составляет 44 % общей площади вертикального сечения рекуператора, найдем величину последнего
м2.
Принимая ширину рекуператора равной ширине печи, т. е. =10,9 м, находим высоту рекуператора
м.
Длина рекуператора
м.
В многозонных методических печах подводимая тепловая мощность (а следовательно, и расход топлива) распределяется по зонам печи следующим образом: в верхних сварочных зонах по 18 – 22%; в нижних сварочных зонах по 20 – 25% и в томильной зоне 12 – 18%.
Распределяя расход топлива по зонам пропорционально тепловой мощности, получим: верхние сварочные зоны по 1,09 м3/с; нижние сварочные зоны по 1,23 м3/с, томильная зона 0,82 м3/с.
Плотность газа 1,0 кг/м3, расход воздуха при коэффициенте расхода п=1,05 равен 5,46 м3/м3 газа.
Пропускная способность горелок по воздуху: верхние сварочные зоны м3/с; нижние сварочные зоны м3/с; томильная зона м3/с.
Расчетное количество воздуха определяем по формуле:
;
верхние сварочные зоны
м3/с;
нижние сварочные зоны
м3/с;
томильная зона
м3/с.
Заключение
Технико-экономическая оценка работы методических печей
Широкое применение методических толкательных печей вызвано тем, что эти печи обеспечивают достаточно высокую производительность при невысоком удельном расходе топлива, а также обеспечивают высокий коэффициент использования тепла в рабочем пространстве. Это объясняется наличием методической зоны.
Применение глиссажных труб с рейтерами повышает равномерность нагрева металла (без царапин и холодных пятен) и создает предпосылки для увеличения ширины и длины печи.
Однако все методические печи толкательного типа имеют недостатки, обусловленные невозможностью быстрой выгрузки металла из печи и трудностями перехода от нагрева слябов одного размера к нагреву слябов другого размера. Эти проблемы могут быть решены только при использовании методических печей с шагающим подом.
Список использованных источников
1. Кривандин В.А. Металлургические печи / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1962 г. – 461 с.
2. Кривандин В.А. Теория, конструкции и расчеты металлургических печей – 2 том / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1986 г. – 212 с.
3. Телегин А. С. Лебедев Н. С. Конструкции и расчет нагревательных устройств – 2-е издание переработанное и дополненное. Москва: Машиностроение, 1975 г. – 170 с.
... площади пода печей определяют не через время нагрева, а используя величину напряжённости активного пода На. В этом случае Fа = Р/На, а длина печи La = Fa/B, где В – ширина печи. 4 Печи для термической обработки сортового проката. 4.1 Режимы термической обработки. Наиболее распространённым видом термической обработки сортового проката является отжиг с целью проведения полной фазовой ...
0 комментариев