1.2 ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

 

В 60-х годах, было установлено, что полупроводники — превосходный материал для лазеров.

Если соединить вместе две пластины из полупроводников разных типов, то посередине образуется переходная зона. Атомы вещества, находящиеся в ней, способны возбуждаться при прохождении электрического тока поперек зоны и генерировать свет. Зеркалами, необходимыми для получения лазерного излучения, могут служить полированные и посеребренные грани самого кристалла полупроводника.

Среди этих лазеров лучшим считается лазер на основе арсенида галлия — соединения редкого элемента галлия с мышьяком. Его инфракрасное излучение имеет мощность до десяти ватт. Если этот лазер охладить до температуры жидкого азота (—200°), мощность его излучения можно увеличить в десять раз. Это значит, что при площади излучающего слоя в 1 см2 мощность излучения достигла бы миллиона ватт. Но полупроводник с переходным слоем такого размера изготовить пока невозможно по техническим причинам.

Можно возбуждать атомы полупроводника пучком электронов (как в твердотельных лазерах — лампой-вспышкой). Электроны проникают глубоко внутрь вещества, возбуждая большее количество атомов; ширина излучающей зоны оказывается в сотни раз шире, чем при возбуждении электрическим током. Поэтому мощность излучения таких лазеров с электронной накачкой достигает уже двух киловатт.

Малые размеры полупроводниковых лазеров делают их очень удобными для применения там, где нужен миниатюрный источник света большой мощности.

 

1.3 ЖИДКОСТНЫЙ ЛАЗЕР

 

В твердых веществах можно создать большую концентрацию излучающих атомов и, значит, получить большую энергию с одного кубического сантиметра стержня. Но их трудно делать, они дороги и к тому же могут лопаться из-за перегрева во время работы.

Газы очень однородны оптически, рассеяние света в них мало, поэтому размер газового лазера может быть весьма внушительным: длина 10 метров при диаметре 10—20 сантиметров для него не предел. Но такое увеличение размера никого не радует. Это вынужденная мера, необходимая для того, чтобы компенсировать ничтожное количество активных атомов газа, находящегося в трубке лазера под давлением в сотые доли атмосферы. Прокачка газа несколько спасает дело, позволяя уменьшить размер излучателя.

Жидкости объединяют в себе достоинства и твердых и газообразных лазерных материалов: плотность их всего в два-три раза ниже плотности твердых тел (а не в сотни тысяч раз, как плотность газов). Поэтому количество их атомов в единице объема примерно одинаково. Значит, жидкостный лазер легко сделать таким же мощным, как лазер твердотельный. Оптическая однородность жидкостей не уступает однородности газов, а значит, позволяет использовать ее большие объемы. К тому же жидкость тоже можно прокачивать через рабочий объем, непрерывно поддерживая ее низкую температуру и высокую активность ее атомов.

1.3.1  ЛАЗЕРЫ НА КРАСИТЕЛЯХ

Называются они так потому, что их рабочая жидкость — раствор анилиновых красок в воде, спирте, кислоте и других растворителях. Жидкость налита в плоскую ванночку-кювету. Кювета установлена между зеркалами. Энергия молекулы красителя накачивается оптически, только вместо лампы-вспышки сначала использовались импульсные рубиновые лазеры, а позднее — лазеры газовые. Лазер-накачку внутрь жидкостного лазера не встраивают, а помещают вне лазера, вводя его луч в кювету через окошко в корпусе. Сейчас удалось добиться генерации света и с импульсной лампой, но не на всех красителях. Растворы могут излучать импульсы света различной длины волны — от ультрафиолета до инфракрасного света — и мощностью от сотен киловатт до нескольких мегаватт (миллионов ватт), в зависимости от того, какой краситель налит в кювету. Лазеры на красителях обладают одной особенностью. Все лазеры излучают строго на одной длине волны. Это их свойство лежит в самой природе вынужденного излучения атомов, на котором основан весь лазерный эффект. В больших и тяжелых молекулах органических красителей вынужденное излучение возникает сразу в широкой полосе длин волн. Чтобы добиться от лазера на красителях монохроматичности, на пути луча становится светофильтр. Это не просто окрашенное стекло. Он представляет собой набор стеклянных пластин, которые пропускают только свет одной длины волны. Меняя расстояние между пластинами, можно слегка изменить длину волны лазерного излучения. Такой лазер называется перестраиваемым. А для того, чтобы лазер мог генерировать свет в разных участках спектра — переходить, скажем, от синего к красному свету или от ультрафиолетового к зеленому, — достаточно сменить кювету с рабочей жидкостью. Наиболее перспективны они оказались для исследования структуры вещества. Перестраивая частоту излучения, можно узнать, свет какой длины волны поглощается или рассеивается на пути луча. Таким способом можно определить состав атмосферы и облаков на расстоянии до двухсот километров, измерить загрязненность воды или воздуха, указав сразу, какого размера частицы его загрязняют. То есть можно построить прибор, автоматически и непрерывно контролирующий чистоту воды и воздуха.

Но наряду с широкополосными жидкостными лазерами существуют и такие, у которых, наоборот, монохроматичность гораздо выше, чем у лазеров на твердом теле или на газе.

Длина волны света лазера может изменяться, укорачиваясь и удлиняясь примерно на одну сотую (у хороших лазеров). Чем меньше расстояние между зеркалами, тем эта полоса шире. У полупроводниковых лазеров, например, она составляет уже несколько длин волн, а у лазера на основе солей неодима эта полоса — одна десятитысячная. Такое постоянство длины волны можно получить только у больших газовых лазеров, да и то, если принять всяческие необходимые для этого меры: обеспечить устойчивость температуры трубки, силы тока, ее питающего, и включить в схему лазера систему автоматической подстройки длины волны излучения. Мощность излучения при этом должна быть минимальной: при ее повышении полоса расширяется. Зато в жидкостном неодимовом лазере узкая полоса излучения получается сама собой и сохраняется даже при заметном повышении мощности излучения, а это крайне важно для всякого рода точных измерений.

Поэтому от того, насколько точно выдерживается длина волны света, излучаемого лазером, зависит и точность измерений. Уменьшение полосы излучения лазера в сто раз сулит стократное увеличение точности измерения длин.

 


Информация о работе «Лазеры и их применение»
Раздел: Физика
Количество знаков с пробелами: 60573
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
63052
0
0

... , что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой ...

Скачать
84833
1
2

... объему активной среды и максимальной мощности (энергии) источника внешнего возбуждения (накачки). Основными особенностями лазерного излучения, делающими его перспективным для применения в различных областях медицины, являются высокие направленность, монохроматичность и энергоемкость. Высокая направленность лазерного излучения характеризуется тем, что угловое расхождение его пучка в свободном ...

Скачать
39497
0
0

... в этих лазерах может быть доведена до сотен ватт,что обещает открыть целую новую область лазерных применений. 5. Полупроводниковые лазеры.   Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель(МО). а) Принципы работы МО накопителя. МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание ...

Скачать
42106
0
0

... повседневной производственной и научной деятельности. С годами этот “инструмент” будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров. Нарастающие темпы исследований в области лазерной техники открывают возможности создания новых типов лазеров со значительно улучшенными характеристиками, позволяющими расширить области их применения в ...

0 комментариев


Наверх