1.4 ХИМИЧЕСКИЙ ЛАЗЕР И ДРУГИЕ

 

Поиск новых лазеров, новых путей повышения мощности лазерного излучения, ведется в разных направлениях. В их числе, например, квантовый генератор с химической накачкой, первый вариант которого был создан в Институте химической физики АН СССР в лаборатории члена-корреспондента Академии наук В. Л. Тальрозе. В таком лазере в процессе реакции соединения фтора F с водородом Н2 или дейтерием D2 образовавшиеся молекулы HF или DF переходят на высокий энергетический уровень. Спускаясь с этого уровня, они и создают лазерное излучение — молекулы HF на волне 2700 нм, молекулы DF — на волне 3600 нм. В лазерах этого типа достигаются мощности до 10 кВт.

В одном из сравнительно мощных импульсно-периодических газовых лазеров в качестве рабочего вещества используются пары меди при температуре 1500°С или в более простом варианте пары солей меди при температуре 400°С. Накачка осуществляется энергией электронов, движущихся в газовом разряде. Лазерное излучение происходит при переходе атомов меди из возбужденного состояния в одно из двух метастабильных состояний, и при этом возможно излучение на двух длинах волн 510,6 нм и 578,2 нм, соответствующих двум оттенкам зеленого цвета. В резонаторе, который представляет собой интенсивно прокачиваемую трубу диаметром 5 см и длиной 1 м, достигнута мощность в импульсе 40 кВт при продолжительности импульсов 15—20 не, частоте следования 10—100 кГц, средней мощности в несколько десятков ватт и кпд более 1%- Ведется работа по повышению средней мощности «медного» лазера до 1 кВт.

Особый класс образуют мощные лазеры на красителях, главное достоинство которых — возможность плавного изменения частоты. Используемые в них жидкие среды имеют «размытые» энергетические уровни и допускают генерацию на многих частотах. Выбор одной из них может производиться изменением параметров резонатора, например, поворотом призмы внутри него. Если для накачки использовать мощные источники излучения, в частности, импульсные лазеры и осуществить интенсивную циркуляцию жидкого красителя, то становится реальным создание лазеров с перестраиваемой частотой со средней мощностью порядка 100 Вт и частотой повторения импульсов 10—50 кГц.

Когда речь заходит о перспективах, чаще других называют йодный лазер, в резонаторе которого соединение иода, фтора и углерода CF3J или более сложные молекулы под действием ультрафиолетовой накачки диссоциируют, разваливаются на части. Отделившиеся атомы иода оказываются в возбужденном состоянии и в дальнейшем дают инфракрасное лазерное излучение с длиной волны 1315 нм. Часто называют и лазеры на так называемых эксимерных молекулах, которые вообще могут находиться только в возбужденном состоянии. В процессе накачки затрачивается энергия на то, чтобы объединить разрозненные атомы в молекулу, и при этом она сразу оказывается возбужденной, готовой к излучению. И, отдав свой квант излучения, сделав вклад в формирование лазерного луча, эксимерная молекула просто распадается, атомы ее почти мгновенно разлетаются. Первый эксимерный лазер был создан еще десять лет назад в лаборатории академика Н. Г. Басова, ультрафиолетовое лазерное излучение на волне 176 нм здесь получили при возбуждении жидкого ксенона Хе2 мощным пучком электронов. Лет через пять в нескольких американских лабораториях получили лазерное излучение на других эксимерных молекулах, главным образом соединениях инертных газов с галоидами, например, XeF, XeCl, XeBr, KrF и других. Эксимерные лазеры работают как в видимом, так и в ультрафиолетовом диапазоне, причем они допускают некоторое изменение частоты. Созданы лазеры, имеющие кпд 10% и энергию 200 Дж в импульсе.


1.5МОЩНЫЕ ЛАЗЕРЫ

Одна из главных тенденций в развитии современной прикладной физики — это получение все более высоких плотностей энергии и поиск путей высвобождения ее за все более короткое время. Стремительный прогресс квантовой электроники, привел к созданию большого семейства мощных лазеров. Мощные лазеры открыли принципиально новые возможности как для получения рекордно высоких концентраций энергии в пространстве и времени, так и для очень удобного подвода световой энергии к веществу. Прежде чем знакомиться с конкретными результатами по созданию мощных лазеров, полезно вспомнить, что их можно разделить на три группы — импульсные, импульсно-периодические и непрерывные. Первые излучают свет одиночными импульсами, вторые — непрерывными сериями импульсов, и, наконец, третьи, дают непрерывное излучение.

Мощность — характеристика относительная, она говорит о том, какая работа выполнена, какая энергия затрачена или получена за единицу времени. Единица мощности, как известно, ватт (Вт) — он соответствует энергии в 1 Дж, выделившейся за 1 секунду (с). Если выделение этой энергии растянется на 10 с, то на каждую секунду придется лишь 0,1 Дж и, следовательно, мощность составит 0,1 Вт. Ну, а если 1 Дж энергии выделится за сотую долю секунды, то мощность составит уже 100 Вт. Потому что при такой интенсивности процесса за секунду было бы выдано 100 Дж. На это «бы» не нужно обращать внимания — при определении мощности не имеет значения, что процесс длился всего одну сотую секунды и энергии за это время выделилось немного. Мощность говорит не о полном, итоговом, действии, а о его интенсивности, о его концентрации во времени. Если работа шла достаточно долго, во всяком случае, больше секунды, то мощность указывает на то, что было действительно сделано за одну секунду.

В импульсном лазере излучение длится очень недолго, какие-то ничтожные доли секунды, и даже при небольшой излучаемой энергии процесс оказывается сильно сжатым, сконцентрированным во времени, а мощность получается огромной. Вот, например, что было в первом ОКГ, в первом рубиновом лазере, созданном в 1960 году: он излучал импульс света с энергией около 1 Дж и продолжительностью 1 мс (миллисекунда, тысячная секунды), то есть мощность импульса составляла 1 кВт. Через некоторое время появились лазеры, которые тот же джоуль энергии излучали в гораздо более коротком импульсе — до 10 нс (наносекунда, миллиардная часть секунды). При этом мощность импульса с энергией в тот же джоуль достигала уже 100 тысяч кВт. Это еще не Куйбышевская ГЭС, имеющая мощность 2 миллиона кВт, но уже электростанция для небольшого города. С той, конечно, разницей, что лазер развивает эту огромную мощность лишь в миллиардные доли секунды, а электростанция — непрерывно круглые сутки. Нынешние лазеры дают импульсы длительностью до 0,01 нс, при той же энергии 1 Дж их мощность достигает 100 миллионов кВт.

Источник энергии Плотность энергии Дж/см3 Плотность мощности Вт/см3
Электрический конденсатор 10-2
Электрический разряд 10-4 108—109
Химическое взрывчатое вещество 104 109
Сильноточный электронный пучок 106 1013—1014
Ядерное взрывчатое вещество 1010— 1011 1016—1018
Сфокусированный мощный лазерный пучок 1010—1012 1020—1022
Аннигиляция вещества (плотность 10 г/см3) 1015

 


Лазерный луч — это поток исключительно упорядоченного когерентного излучения, остронаправленного, сконцентрированного в пределах небольшого телесного угла. Именно за все эти качества мы платим столь высокую цену — кпд лазеров составляет доли процента, а в лучшем случае несколько процентов, то есть на каждый джоуль лазерного излучения нужно затратить десятки, а то и сотни джоулей энергии накачки. Но часто даже такая высокая плата совершенно оправданна,— теряя количество, мы приобретаем качество. В частности, когерентность, направленность лазерного луча в сочетании с последующей фокусировкой в очень малом объеме, например, до сферы диаметром 0,1 мм, и сжатием процесса во времени, то есть излучением очень короткими импульсами, позволяет получить огромные плотности энергии. Об этом напоминает таблица 1. Из таблицы видно, что концентрации энергии в сфокусированном мощном лазерном луче всего в тысячу раз меньше своеобразного рекордного значения для полной аннигиляции вещества нормальной плотности, полного превращения массы в энергию. Увеличение мощности лазеров связано с некоторыми общими проблемами, прежде всего со свойствами рабочего тела, то есть самого вещества, где рождается излучение. Но есть и проблемы специфические для импульсных, импульсно-периодических и непрерывных лазеров. Так, например, для импульсных лазеров одна из важных проблем — стойкость оптических элементов в сильном световом поле очень коротких импульсов. Для непрерывных и импульсно-периодических очень важна проблема отвода тепла, так как эти лазеры развивают большую среднюю мощность. Для лазера, работающего в режиме длинной очереди, импульсная мощность говорит о том, как сконцентрирована во времени энергия одного импульса, а средняя — о работе, которую выполняет серия импульсов, длившаяся секунду. Так, например, если лазер в секунду дает 20 импульсов длительностью 1 мс и энергией 1 Дж в каждом, то импульсная мощность составит 1 кВт, а средняя — 20 Вт.

Все виды лазеров начинали с достаточно скромных энергетических показателей, а совершенствовались зачастую разными путями. В частности, первый импульсный лазер работал в режиме свободной генерации — в нем самопроизвольно возникала лавина лазерного излучения и опять-таки сама собой прекращалась по окончании возбуждения. Импульс длился по нынешним меркам долго, и это определило сравнительно невысокую импульсную мощность.

Через несколько лет научились управлять генерацией методом модуляции добротности, вводя в резонатор ячейку Керра или другой аналогичный элемент, который под действием электрического напряжения меняет свои оптические свойства. В обычном состоянии ячейка закрыта, непрозрачна, и лазерная лавина в резонаторе не возникает. Только под действием короткого электрического импульса ячейка открывается, и в рабочем теле возникает короткий лазерный импульс. Его длительность может быть всего в несколько раз больше времени прохождения света между зеркалами лазера, то есть может составлять 10—20 нс.

Этот метод дал заметный прирост импульсной мощности за счет уменьшения длительности импульса. Очень короткие импульсы, вплоть до пикосекундных, получают в режиме синхронизации, или, иначе, в режиме захвата мод. Здесь в резонатор вводят особый нелинейный элемент, он неодинаково ведет себя, неодинаково просветляется для разных по интенсивности всплесков излучения и как бы вырезает из наносекундного светового импульса очень короткие пикосекундные всплески интенсивности.


Информация о работе «Лазеры и их применение»
Раздел: Физика
Количество знаков с пробелами: 60573
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
63052
0
0

... , что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой ...

Скачать
84833
1
2

... объему активной среды и максимальной мощности (энергии) источника внешнего возбуждения (накачки). Основными особенностями лазерного излучения, делающими его перспективным для применения в различных областях медицины, являются высокие направленность, монохроматичность и энергоемкость. Высокая направленность лазерного излучения характеризуется тем, что угловое расхождение его пучка в свободном ...

Скачать
39497
0
0

... в этих лазерах может быть доведена до сотен ватт,что обещает открыть целую новую область лазерных применений. 5. Полупроводниковые лазеры.   Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель(МО). а) Принципы работы МО накопителя. МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание ...

Скачать
42106
0
0

... повседневной производственной и научной деятельности. С годами этот “инструмент” будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров. Нарастающие темпы исследований в области лазерной техники открывают возможности создания новых типов лазеров со значительно улучшенными характеристиками, позволяющими расширить области их применения в ...

0 комментариев


Наверх