2 TTL/CMOS входа (выхода) ( от DSP )
2 RS - 232 входа (выхода) ( от ЭВМ )
Выходной уровень сигнала - + 9 V ( на ЭВМ )
Входной уровень сигнала - + 30 V (от ЭВМ )
Корпус DIP 16.
Совпадение по выводам с MAX232A.
Диапазон рабочих температур: -40 0C ... +85 0C
Назначение выводов AD232A:
V+ - внутренняя генерация позитивного напряжения ( +10 V )
V- - внутренняя генерация негативного напряжения ( -10 V )
С1+ - подключение внешнего конденсатора 1 номиналом 0.1 мкФ ( плюсом к этому выводу)
С1- - подключение внешнего конденсатора 1 номиналом 0.1 мкФ ( минусом к этому выводу)
С2+ - подключение внешнего конденсатора 2 номиналом 0.1 мкФ ( плюсом к этому выводу)
С2- - подключение внешнего конденсатора 2 номиналом 0.1 мкФ ( минусом к этому выводу)
TR1IN - первый вход сигнала с TTL/CMOS уровнем от DSP. Внутри микросхемы находится резистор номиналом 400 кОм подключаемый к данному выводу и соединенный с Ucc = + 5 V.
TR2IN - второй вход сигнала с TTL/CMOS уровнем от DSP. Внутри микросхемы находится резистор номиналом 400 кОм подключаемый к данному выводу и соединенный с Ucc = + 5 V.
TR1OUT - первый выход сигнала с уровнем для интерфейса RS - 232. (уровень + 9 V).
TR2OUT - второй выход сигнала с уровнем для интерфейса RS - 232. (уровень + 9 V).
RC1IN - первый вход сигнала с уровнем от интерфейса RS - 232 из host - компьютера (ЭВМ). Внутри микросхемы находится резистор номиналом 5 кОм подключаемый к данному выводу и соединенный с землей.
RC2IN - второй вход сигнала с уровнем от интерфейса RS - 232 из host - компьютера (ЭВМ). Внутри микросхемы находится резистор номиналом 5 кОм подключаемый к данному выводу и соединенный с землей.
RC1OUT - первый выход сигнала с уровнем TTL/CMOS образованным из сигнала поступившего по интерфейсу RS - 232 из host - компьютера (ЭВМ).
RC2OUT - второй выход сигнала с уровнем TTL/CMOS образованным из сигнала поступившего по интерфейсу RS - 232 из host - компьютера (ЭВМ).
Рисунок 3.8 Функциональная блок - схема драйвера ADM232A
Рисунок 3.9 - Схема включения драйвера интерфейса RS - 232 AD232A
Исходя из данной стандартной схемы включения выбираем конденсаторы C25,C26,C27,C28 номиналом 0.1 мкФ.
Рассмотренный драйвер интерфейса RS-232 способен обеспечивать высокое быстродействие при работе с последовательным портом, что в нашем устройстве, которое оснащено скоростным DSP, очень важно, а также способен работать с сигналами ТТЛ-уровня, которые используются нашим DSP. Следовательно данный драйвер полностью подходит для обеспечения связи по последовательному порту с ЭВМ.
3.4 Выбор памяти с ультрафиолетовым стиранием (EPROM)
Микросхема памяти с ультрафиолетовым стиранием необходима в нашем устройстве для хранения в ней программы под цифровой сигнальный процессор, которая и будет реализовывать алгоритм кодирования - декодирования.
ADSP -2181 способен работать не более, чем с 4 Мб внешней памяти.
Рассмотрим микросхемы памяти серии AM27Cxxx:
Таблица 3.1 - Объем памяти EPROM серии AM27Cxxx.
Тип микросхемы | Объём памяти | |
1 | AM27С256 | 32Кб |
2 | AM27С512 | 64Кб |
3 | AM27С010 | 128Кб |
4 | AM27С020 | 256Кб |
5 | AM27С040 | 512Кб |
6 | AM27С080 | 1Мб |
Т.к. выбранный нами цифровой сигнальный процессор
ADSP-2181 имеет расширенную систему команду, по сравнению со своими предшественниками, и хранит в памяти большое количество оперативной информации (стек, регистры, указатели и т.п.), то только для его нормальной работы необходим большой объем памяти.
А так как кроме того, мы проектируем большую программу по кодированию-декодированию информации, инициализации DSP и кодека, а также организации способа частотной модуляции, то дополнительно к этому нам еще требуется не менее 500 Kb.
Итого вобщем необходимо не менее 600 Kb.
Выбираем микросхему с максимальным объёмом памяти 1 Мб AM27C080.
Рисунок 3.10 - Графическое изображение EPROM AM27C080.
... части локальной сети не позволяют останавливаться на известных достигнутых результатах и побуждают на дальнейшее исследование в дипломной работе в направлении разработки локальной сети с беспроводным доступом к ее информационным ресурсам, используя перспективные технологии защиты информации. 2. Выбор оборудования, для перспективных технологий СПД 2.1 Выбор передающей среды Зачастую перед ...
... телекоммуникаций может потребоваться не одна смена стандарта связи без смены комплекта приемо-передающей аппаратуры. Все это возможно в более сложных цифровых радиопередающих устройствах, построенных на основе специализированных цифровых процессоров передатчиков (TSP), которые будут рассмотрены в следующей главе. 2. Цифровые синтезаторы частоты с косвенным синтезом (ФАПЧ) Современные ...
... сети также входит в физический уровень. Независимо от того, является ли сеть кольцевой сетью с маркерным доступом, звездоподобной сетью, или имеет гибридную конфигурацию, решение о топологии сети принимается с учетом физического уровня. В физический уровень также входит конфигурация кластеров высокой готовности. По большому счету нужно помнить о том, что если физические устройства не знают о ...
... на будущее. DAO и RDO известны уже достаточно давно, и появление двух разных механизмов было связано с необходимостью оптимизации решения двух отдельных задач: доступа к локальным и удаленным базам данных соответственно. Однако естественное развитие вычислительных систем привело к необходимости создания единого механизма, который обеспечил бы единый подход при работе с БД различных классов. В ...
0 комментариев