3.2. Основные результаты и выводы.
Результаты экспериментального исследования влияния отжига на параметры фосфоресценции молекул дибромдифенилоксид-аценафтен в замороженных н.-парафиновых растворах можно сформулировать следующим образом:1. Интегральная интенсивность спектра фосфоресценции дибромдифенилоксида в н.-октане в присутствии акцептора после отжига при Т=167К уменьшилась в 2 раза. При этом так же наблюдается смещение максимума 0-0 полосы в спектре фосфоресценции донора в коротковолновую область на 1-2нм.
2. Интегральная интенсивность спектра фосфоресценции акцептора при отжиге также уменьшается, причем в большее число раз, чем донора. Закон изменения интенсивности фосфоресценции акцептора от времени отжига носит экспоненциальный характер. Для всех исследованных систем повышение температуры отжига раствора приводит к уменьшению характерного времени процесса нарастания.
3. Закон зависимости константы скорости процесса носит аррениусовский характер:
q(Т) = q(¥) ехр (-Еак/RT)
Энергия активации процесса для данной донорно-акцепторной пары представляет величину 9 кДж/моль.
4. Время затухания сенсибилизированной фосфоресценции акцептора после отжига уменьшается в 1,3 раза, при этом закон затухания становится не экспоненциальным. Вопрос о причинах данного процесса требует дальнейшего исследования.
Как показали результаты данной работы поведение пары дибромдифенилоксид-аценафтен при отжиге прямо противоположенные донорно-акцепторным парам бензофенон-аценафтен, бензофенон-нафталин, антрон-флуорен, интегральная интенсивность которых увеличивается в процессе отжига [13]. Такое поведение можно предположительно связать с тем, что растворимость дибромдифенилоксида в н.-октане намного меньше, чем остальных указанных веществ.
Если увеличение интенсивности фосфоресценции двухкомпонентных смесей авторы работ [13,25-27] объясняют распадом гетероассоциатов и снятием миграционно-ускоренного тушения, то в данном случае можно предположить, что из-за плохой растворимости происходит выкристаллизация примеси при температуре отжига, что приводит к уменьшению числа мономерных молекул.
Но не смотря на вышесказанное после замены донора энергии некоторые закономерности, полученные для бензофенона и других веществ, сохранились. Например, зависимость изменения интенсивности фосфоресценции акцептора от времени осталась экспоненциальной и зависимость константы скорости процесса от температуры носит аррениусовский характер.
Энергия активации процесса ответственного за рост интенсивности фосфоресценции смеси бензофенон-аценафтен Еак=40кДж/моль, а дибромдифенилоксид-аценафтен Еак=9кДж/моль.
Стоит отметить, что уменьшение времени затухания аценафтена после отжига запаздывает за спадом интенсивности сенсибилизированной фосфоресценции, т.е. τ/τo > I/Io. Если учесть наличие миграционно-ускоренного тушения на ассоциаты (микрокристаллы) в данном случае, то такое поведение данной зависимости стоило ожидать, так как время затухания τд донора во много раз больше времени затухания τак акцептора (порядка 1000 раз) и на акцептор данный процесс влияет сильнее.
Литература.
1. Климов В.В. Фотосинтез и биосфера // Соросовский образовательный журнал. – 1996. - № 8. – С. 6-13.
2. Миронов А.Ф. Фотодинамическая терапия рака – новый эффективный метод диагностики и лечения злокачественных опухолей // Соросовский образовательный журнал. – 1996. - № 8. – С. 32-39.
3. Зенькевич Э.И., Сагун Е.И., Кнюкшто В.Н. и др. Дезактивация S1- и Т1- состояний порфиринов и хлоринов при их взаимодействии с молекулярным кислородом в растворах // Ж. прикл. спектр. – 1996. – Т. 63. - № 4. – С. 599-612.
4. Копылова Т.Н. , Светличный В.А., Кузнецова Р.Т. и др. Флуоресцентные характеристики органических молекул при мощном импульсном лазерном возбуждении // Опт. и спектр. – 1998. – Т. 85. - № 5, - С. 778-782.
5. Бодунов Е.Н. Приближённые методы в теории безызлучательного переноса энергии локализованных возбуждений в неупорядоченных средах // Опт. и спектр. – 1993. – Т. 74. - № 3.- С. 518-551.
6. Королев В.В., Грицан Н.П., Хмельницкий И.В. и др. Определение параметров статического тушения фосфоресценции органических молекул по обменно-резонансному механизму // Хим. физ. – 1987. – Т. 6. - № 7. – С. 892-898.
7. Бурнштейн А.И. Концентрационное тушение некогерентных возбуждений в растворах // УФН. - 1984. - Т. 143. - № 4. - С. 533 - 600.
8. Бодунов Е.Н. Теоретические исследования спектральной миграции возбуждений в трехмерных средах. (Обзор) // Опт. и спектр. – 1998. – Т. 84. - № 3. – С. 405-430.
9. Журавлёв С.В., Левшин Н.В., Салецкий А.Н., Южаков В.И. О роли миграции между мономерными молекулами родаминовых красителей в концентрационном тушении люминесценции растворов // Опт. и спектр. – 1982. – Т. 53. - № 2. – С. 245-251.
10. Лёвшин Л.В., Салецкий А.М. Люминесценция и её измерения. Молекулярная люминесценция. - М.: Изд-во МГУ, 1989. - 272 с.
11. Ермолаев В.Л. Перенос энергии в органических системах с участием триплетного состояния. // УФН. - 1963. - Т. 80. - № 1. - С. 33-40.
12. Левшин Л.В., Салецкий А.М. Оптические методы исследования молекулярных систем. Ч.1. Молекулярная спектроскопия. – М.: Изд-во МГУ, 1994. - 320 с.
13. Дерябин и др. Особенности сенсибилизированной фосфоресценции аценафтена в кристаллах бензофенона / Дерябин М.И., Куликова О.И., Голубин М.А.; Ставроп. гос. пед. ун-т. - Ставрополь, 1996. - 10с. - Деп. в ВИНИТИ 03.04.96., № 1094 – В 96.
14. *Förster Th. // Ann. Phys. – 1948. - V. 2. - № 1-2. - Р. 55-75.
15. Dexter D.L. A Theory of Sensitized Luminescence in Solids // J. Chem. Phys. – 1953. – V. 21. - № 5. – P. 836-850.
16. Ермолаев В.Л. Сенсибилизированная фосфоресценция ароматических соединений (перенос энергии с триплетного уровня на триплетный) // Изв. АН СССР. – 1956. –Т. 20. - № 5. – С. 514-519.
17. Katayama Hideaki, Ifo Shinzaburo, Yamamoto Masahide Intramolecular triplet energy transfer of the system having donor and acceptor at the chain ends. II. The carbazole-naphthalene system // J. Phys. Chem. - 1992. – V. 96. - № 25. – Р. 10115-10119.
18. Haggquist Gregory W., Katayama Hideaki, Tsuchida Akira and oth. Intramolecular triplet energy transfer. III. A carbazole-naphthalene system having short chain length methylene spacer units // J. Phys. Chem. - 1993. – V. 97. - № 37. – Р. 9270-9273.
19. Engel Paul S., Horsey Douglas W., Scholz John N. аnd oth. Intramolecular triplet energy transfer in ester-linked bichromophorie aroalkanes and naphthalenes // J. Phys. Chem. - 1992. – V. 96. - № 19. – Р. 7524-7535.
20. Давыдов А.С. Электронные возбуждения и колебания решётки в молекулярных кристаллах// Изв. АН СССР. – 1970. –Т. 24. - № 3. – С. 483-489.
21. Петренко А.Н. Интегралы переноса триплетного возбуждения в линейных молекулярных кристаллах // Физ. твёрд. тела (С.-Перегбург). -1994. – Т. 36. - № 6. – С. 1784-1787.
22. Breenner H.C. Studies of triplet energy transter in molekular crystals by ODMR and high pressure techniques // Укр. физ. ж. – 1995. – Т. 40. - № 7. - С. 659-666.
23. Багнич С.А. Перколяция энергии электронного возбуждения по триплетным уровням бензальдегида в пористой золь-гелевой матрице // Опт. и спектр. – 1996. – Т. 80. - № 5. – С. 769-772.
24. Багнич С.А. Низкоэффективный транспорт триплетных возбуждений безальдегида в матрице пористое стекло – полиметилметакрилат // Опт. и спектр. – 1997. – Т. 82. - № 4. – С. 567-572.
25. Багнич С.А., Мельниченко И.М., Подденежный Е.Н. и др. Влияние матрицы на фосфоресценцию ароматических соединений в пористых золь-гелевых стеклах // Опт. и спектр. – 1995. – Т. 79. - № 6 – С. 936-941.
26. Багнич С.А., Богомолов В.Н., Курдюков Д.А. и др. Фосфоресценция ароматических соединений в пористой матрице натриево-боросиликатного стекла и взаимодействие со стенками пор // Физ. тв. тела (С-Петербург). – 1995. – Т. 37. - № 10. – С. 2979-2986.
27. Багнич С.А. Фосфоресценция бензофенона в условиях взаимодействия со стенками пористых матриц // Опт. и спектр. – 1996. – Т. 80. - №5. – С. 773-775.
28. Eremenko A.M., Smirnova N.P. Specific features of dye molecular luminescence in solid matrices // Funct. Mater. - 1996. – V. 3. - № 4. - P. 511-517.
29. Бегер В.Н., Сечкарев А.В. Влияние межмолекулярных взаимодействий в пространственно-неоднородных ансамблях молекул на безызлучательный перенос энергии электронного возбуждения // Ж. физ. химии. – 1995. – Т. 69. - № 3. – С. 567-572.
30. Бегер В.Н., Земский В.И. Особенности температурного тушения флуоресценции адсорбированных молекул органических красителей // Опт. и спектр. – 1993. – Т. 74. - № 3. – С. 552-556.
31. Сечкарев А.В., Земский В.И., Бегер В.Н. и др. Спектральные проявления фрактального распределения адсорбированных в порах молекул в условиях неоднородности межмолекулярных взаимодействий // Ж. физ. химии. – 1992. – Т. 66. - №2. – С. 329-334.
32. Бегер В.Н., Колесников Ю.Л., Сечкарев А.В. Особенности концентрационного тушения флуоресценции молекул красителей, адсорбируемых неоднородной поверхностью диоксида кремния // Опт. и спектр. – 1995. – Т. 78. - № 2. – С. 249-253.
33. Осипов В.В., Самойленко Ю.Я., Риттер А.Я. Существование динамического и статического механизмов тушения флуоресценции в адсорбируемом слое // Химия высоких энергий. – 1995. – Т. 29. - № 5. – С. 363-367.
34. Горяев М.А. Спектральная зависимость квантового выхода люминесценции адсорбированных красителей // Опт. и спектр. – 1997. – Т. 82. - №5. – С. 781-783.
35. Гобов Г.В., Конашенко В.И., Нурмухаметов Р.Н. Триплет-триплетный перенос энергии в условиях эффекта Шпольского // Опт. и спектр. – 1976. – Т. 40. - № 2. – С. 406-408.
36. Гобов Г.В., Конашенко В.И. Триплет-триплетный перенос энергии в условиях эффекта Шпольского // Ж. прикл. спектр. – 1978. – Т. 28. - № 4. – С. 663-667.
37. Гобов Г.В., Юденков В.В. Спектры сенсибилизированной фосфоресценции дифениленоксида в бинарных растворителях при 77 К // Электронно-колебательные спектры некоторых ароматических соединений. – Смоленск, 1975. – С. 20-23.
38. Гобов Г.В., Конашенко В.И. Спектры сенсибилизированной фосфоресценции кристаллических растворов при 77 К // Опт. и спектр. – 1977. – Т. 43. - № 6. – С. 1054-1059.
39. Гребенщиков Д.М., Дерябин М.И. Двухэкспоненциальное затухание сенсибилизированной фосфоресценции органических молекул в растворах при 77 К // Хим. физ. – 1989. – Т. 8. - № 12. – С. 1615-1618.
40. Вавилов С.И. Теория концентрационного тушения флуоресценции растворов // Собр. соч.– М.: изд. АН СССР, 1952. – Т. 2. - С. 122-130.
41. Бодунов Е.Н., Цвирко М.П. Расчёт оптимальной концентрации активаторов, обеспечивающих максимальный выход сенсибилизированной люминесценции в двухкомпонентных средах // Опт. и спектр. – 1992. – Т. 72. - № 4. – С. 884-888.
42. Бодунов Е.Н., Берберан-Сентуш М.Н., Мартиню Ж.М.Г. и др. Расчёт квантового выхода люминесценции при прыжковом механизме тушения методом Монте-Карло // Опт. и спектр. – 1996. – Т. 80. - № 6. – С. 909-912.
43. Бодунов Е.Н. Расчёт скорости концентрационного самотушения в рамках метода непрерывных во времени случайных блужданий // Опт. и спектр. – 1996. – Т. 81. - № 3. – С. 405-408.
44. Берберан-Сентуш М.Н., Бодунов Е.Н., Мартиню Ж.М.Г. Концентрационная зависимость квантового выхода сенсибилизированной люминесценции при переносе энергии с высоких возбужденных состояний // Опт. и спектр. – 1997. – Т. 83. - № 3. – С. 378-383.
45. Берберан-Сентуш М.Н., Бодунов Е.Н., Мартиню Ж.М.Г. Прыжковый механизм тушения люминесценции и диффузионное приближение // Опт. и спектр. – 1998. – Т. 85. - № 6. – С. 948-951.
46. Асенчук О.Д., Могильный В.В. Фотоиндуцированное структурирование и миграция энергии в ансамблях трехуровневых центрах при насыщении // Опт. и спектр. – 1995. – Т. 79. - № 5. – С. 800-804.
47. Багнич С.А., Дорохин А.В. Миграция энергии по триплетным уровням бензофенона в полиметилметанокрилате // Физ. тв. тела – 1991. – Т. 33. - № 5. – С. 1382-1386.
48. Сенаторова Н.Р., Левшин Л.В., Рыжиков Б.Д. Концентрационное тушение люминесценции в условиях неоднородного уширения электронных спектров молекул растворённого вещества // Ж. прикл. сектр. – 1979. – Т. 30. - № 4. – С. 658-661.
49. Рыжиков Б.Д., Левшин Л.В., Сенаторов Н.Р. О природе длинноволнового концентрационного смещения спектров люминесценции молекул примеси // Опт. и спектр. – 1978. – Т. 45. - № 2. – С. 282-287.
50. Гаевский А.С., Давыдова Н.А., Добровольская О.В. и др. Миграция энергии триплетных состояний пигментов типа хлорофилла и флуоресцеина // Изв. АН СССР – сер. физ. – 1980. – Т. 44. - № 4. – С. 783-788.
51. Бисенбаев А.К., Вязанкина Л.А., Мукушев Б.Т. и др. Исследования процессов ассоциации молекул красителей в водных растворах полиэлектролитов // Ж. прикл. спектр. – 1994. – Т. 60. - № 5-6 – С. 406-410.
52. Низамов Н., Хидирова Т.Ш., Захидов У. и др. Люминесценция ассоциированных молекул и комплексов органических красителей в растворах // Изв. АН СССР – сер. физ. – 1990. – Т. 54. - № 3. – С. 502-506.
53. Низамов Н., Хидирова Т.Ш., Юнусова М. Люминесценция разнородных димеров некоторых полиметиновых красителей в дихлорэтане // Ж. прикл. спектр. – 1991. – Т. 55. - № 5. – С. 881-884.
54. Низамов Н., Умаров К.У., Атаходжаев А.К. Спектроскопическое исследование межмолекулярных взаимодействий в растворах пиронина G и новометиленового голубого // Ж. прикл. спектр. – 1979. – Т. 30. - № 4. – С. 651-657.
55. Спектроскопия внутри- и межмолекулярных взаимодействий. / Под ред. Н. Г. Бахшиева. - вып. 2. – Л.: Изд. ЛГУ, 1978г. – 212 с.
56. *Левшин Л.В., Рева М.Г., Рыжиков Б.Д. // Вестник МГУ. - Сер. физика, астрономия. - 1981. - Т. 22. - № 4. - С. 75.
57. Журавлёв С.В., Левшин Л.В., Салецкий А.М. и др. Миграция электронного возбуждения в смешанных растворах красителей // Опт. и спектр. – 1984. – Т. 56. - № 6. – С. 1044- 1048.
58. Сверчков С.Е., Сверчков Ю.Е. Влияние структуры матрицы на скорость тушения люминесценции примесных центров в теории прыжковой миграции // Опт. и спектр. – 1992. – Т. 73. - № 3. – С. 488-492.
59. Соловьёв А.Н., Южаков В.И. Влияние комплексообразования на спектральные и люминесцентные характеристики растворов аминокумаринов // Изв. АН СССР. - Сер. физ.– 1990. –Т. 54. - № 3. – С. 513-517.
60. Шпольский Э.В. Проблемы происхождения и структуры квазилинейчатых спектров органических соединений при низких температурах // УФН. – 1962. – Т. 77. - № 2. – С. 321-336.
61. Davydov А.S. The radiationless transfer of energy of electronic excitation between impurity molecules in crystals // Phys. Stat. Solidi. – 1968. - V. 30. - № 1. - C. 357-366.
62. Brandon R., Gerkin R., Hutchison C. Electron magnetic resonance of triplet states and the detection of energy transfer in crystals // J. Chem. Phis., 1962, V. 37, № 2, Р. 447-448.
63. Сапунов В.В., Егорова Г.Д. Влияние температуры на некоторые бимолекулярные процессы с участием порфиринов и металлопорфиринов в водных растврах // Ж. прикл. спектр. – 1993. – Т. 59. - № 1-2. – С. 54-60.
64. Вавилов С.И. Собр. соч. - М.: Изд-во АН СССР, 1954. – Т. 1. – 450 с.
65. Химическая энциклопедия: В 5 т.: / Под ред. И. Л. Кнунянца. и др. - М.: Большая Российская энцикл., 1990. – Т. 2. - С. 631-635.
66. Борисевич Н.А., Казберук Д.В., Лысак Н.А. и др. Фотофизические и фотохимические релаксационные процессы в ароматических кетонах // Изв. АН СССР. - сер. физич. – 1990. - Т. 54. - № 3. - С. 370-376.
67. Головченко В.П., Файдыш А.Н., Кольчинский М.З. Влияние структуры решётки на фосфоресценцию чистых и примесных кристаллов бензофенона // Изв. АН СССР – сер. физич. – 1970. – Т. 34. - № 3. - С. 589-593.
68. Мамедов Х.И. Спектры поглощения, флуоресценции и фосфоресценции аценафтена в парафиновых растворителях // Изв. АН СССР – сер. физич. – 1965. – Т. 29. - № 8. - С. 1404-1406.
69. Dekkers J.J. Hoornweg G. Ph., Maclean C. and oth. Some characteristic features of Shpolskii spectra fluorescence spectra of acenaphthene in n-alkane matrices // J. of mol. spectr. - 1977. – V. 68. – P. 56-67.
70. Дерябин М.И., Дзарагазова Т.П., Падалка В.В. и др. Температурная зависимость спектров фосфоресценции аценафтена в матрицах н.-гексана // Вестник Ставропльского гос. пед. ун-та. – 1995. - № 2. - С. 116-119.
71. Борисевич Н.А., Водоватов Л.Б., Дьяченко Г.Г. и др. Колебательная структура уровней свободных молекул аценафтена в основном и возбуждённом электронных состояниях // Оп. и спектр. – 1996. - Т. 81. - № 5. – С. 757-761.
72. Доброхотова В.К., Кульчицкий В.А., Набойкин Ю.В. Спектры замороженных растворов двух примесей при 77К// Известия АН СССР. Серия физическая. – 1963. – Т.27. – №6. – С.690–692.
73. Климова Л.А., Нерсесова Г.Н. Спектры флуоресценции и поглощения бинарных смесей ароматических углеводородов в замороженных кристаллических растворах// Журнал прикладной спектроскопии. – 1965. – Т.2. – №1. – С.45–50.
74. Глядковский В.И., Климова Л.А., Нерсесова Г.Н. Спектроскопия смесей ароматических углеводородов в замороженных кристаллических растворах// Оптика и спектроскопия. – 1967. – Т.23. – №3. – С.407 – 413.
75. Cadas J.P., Courpron C., Lochet R. Transfersts á energie entre entre éħdts triplets miltien cristallin a 77K// CR.–1962.–V.254. – №4. – P.2490 – 2492.
76. Rouset A., Lochet R., Cadas J.P.Transferts á energie entre niveux triplets de la benzophenone et du naphtaline cristallisesa 77K// J. Phys.–1963.–V.24, №2. – P.2141–2143.
77. Гребенщиков Д.М., Блужин В.Б., Дзарагазова Т.П. и др. Т-Т перенос энергии между разными примесными центрами в матрицах Шпольского// Современные аспекты тонкоструктурной и селективной спектроскопии. – М.: 1984. – С. 27–31.
78. Расколодько В.Г., Файдыш А.Н. Спектры фосфоресценции и миграция энергии триплетного уровня в кристаллах бензофенона// Известия АН СССР. Серия физическая. – 1965. – Т.29. – №8. – С. 1309–1312.
79. Болотникова Т.Н., Наумова Т.М. К вопросу о концентрационной зависимости квазилинейчатых спектров фосфоресценции// Оптика и спектроскопия. – 1963. – Т.25. – №3. – С. 460 – 463.
80. Артюхов В.Я., Майер Г.В., Риб Н.Р.. Квантово-химическое исследование триплет-триплетного переноса энергии электронного возбуждения в бихромоформных молекулярных системах // Оптика и спектроскопия. – 1997. – Т.83. – №5. – С.743 – 748.
81. Spectroscopy and Excitation Dynamics of Condensed Molecular System / Eds. Agranovich V.H., Hochstraser R.M. – Amsterdam: North – Holland, 1983. Спектроскопия и динамика возбуждений в конденсированных молекулярных системах / Под ред. Аграновича В.М. и Хохштрассера Р.М. – М, 1987 – 492с.
82. Мак-Глин С., Адзуми Т., Киносита М. Молекулярная спектроскопия триплетного состояния. – М.: Мир, 1972 – 448с.
83. Осадько И.С. Селективная спектроскопия одиночных молекул. – М.: Физматлит, 2000 – 319с.
84. Агранович В.М., Галанин М.Д. Перенос энергии электронного возбуждения в конденсированных средах. – М.: Наука, 1978 – 384с.
85. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. – М.: Изд-во физико-математической литературы, 1963. – 704 с.
86. Inokuti M. Hirayama F. Influence of energy transfer by the exchange mecanism on donor luminescence // J. Chem. Phys. – 1965. – V.43. – №6. – P.1978 – 1989.
87. Медведов Э.С., Ошеров В.И. Теория безызлучательных переходов в многоатомных молекулах. – М.: Наука, 1977. – С.7–59.
88. Теренин А.Н. Фотоника молекул красителей. – Л.: Наука, 1967 – 616 с.
89. Паркер С. Фотолюминесценция растворов. – М.: Мир, – 1972 – 511с.
90. Красновский А.А. Фотохимия хлорофилла и его аналогов/ В сб. элементарные фотопроцессы в молекулах – М.: Наука. – 1966. – С. 213 – 242.
91. Портер Дж. Профессор Александр Теренин (1896 – 1967) – пионер фотохимии. К 100 – летию со дня рождения// Оптика и спектроскопия. – 1997. – Т.83. – №4. – С. 534 – 538.
92. Гурвич А.М. Введение в физическую химию кристаллофосфоров – М.: Высшая школа, 1982 – 376 с.
... основном состоянии на вероятность излучательной дезактивации энергии триплетного возбуждения в акцепторе показали следующее. Такое взаимодействие увеличивает вероятность дезактивации триплетных молекул акцептора в системах для которых. При этом константа скорости излучательного перехода экспоненциально увеличивается с уменьшением среднего расстояния между компонентами донорно-акцепторной смеси. ...
... (47) Величина, обратная t, характеризует скорость прироста при данной температуре концентрации триплетных молекул акцептора энергии, q = 1/t , и называется константой скорости процесса [161]. Итак, прирост в результате отжига образца числа молекул, участвующих в излучении сенсибилизированной фосфоресценции происходит по экспоненциальному закону. Константа скорости этого ...
... , что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой. Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их ...
0 комментариев