Войти на сайт

или
Регистрация

Навигация


Учреждение образования РБ

Кафедра общей физики

Реферат на тему:

«Ферромагнетизм. Модель Изинга»

Брест 2009


Содержание

 

Введение

1. Явление ферромагнетизма

2. Фазовые переходы в ферромагнетиках

3. Распределение Гиббса

4. Модель Изинга

5. Линейная модель Изинга с дальним взаимодействием


Введение

Классические решеточные модели введены в статистическую физику по следующим причинам:

1. Замена классической модели, для которой вычисление статистического интеграла с потенциалом общего вида весьма проблематично, на решеточную модель с существенным ограничением радиуса действия потенциала. Благодаря этому вместо «реального» межатомного потенциала, задаваемого некоторой функцией v(r) с бесконечным числом возможных значений, появляется конечный набор значений этой функции в точках, определяемых возможными расстояниями между узлами решетки в приделах радиуса действия потенциала. В случае одномерной модели Изинга, к примеру, от «бывшего» межатомного потенциала остается только одна константа – значение потенциала взаимодействия между ближайшими соседями.

2. Как известно из опыта, при достаточно низких температурах почти все вещества переходят в кристаллическое состояние. Однако само существование кристаллического состояния вывести из принципов статистической механики пока не удалось. Поэтому построение статистической термодинамики кристаллического состояния имеет смысл в рамках модели, в которой кристаллическая структура вводится аксиоматически.

3. Решеточные модели позволяют «оттачивать» математический аппарат и осуществлять оценку эффективности разрабатываемых приближенных методов статистической физики.

В своей работе я расскажу о ферромагнетиках. Цель работы: изучить явление ферромагнетизма. Также познакомиться с одномерной и двумерной моделью Изинга.


1. Явление ферромагнетизма

Ферромагнетики – вещество, у которого вектор индукции собственного магнитного поля, сонаправленный с вектором магнитной индукции внешнего поля, значительно превышает его по модулю (внешнее магнитное поле значительно увеличивается). Ферромагнетики, в отличие от слабомагнитных диамагнетиков и парамагнетиков, являются сильномагнитными средами: внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

Ферромагнитные материалы в большей или меньшей степени обладают магнитной анизотропией, то есть свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

Точка Кюри для различных материалов различна:

◊  для железа+7700 С;

◊  для никеля+3650 С;

◊  для кобальта +11300 С.

При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров, то есть увеличение или уменьшение их длины с одновременным уменьшением или увеличением поперечного сечения. Это явление называется магнитострикцией, оно зависит от строения кристаллической решетки ферромагнетика.

В чем же заключается природа ферромагнетизма?

Согласно представлениям Вейсса (1865-1940), его описательной теории ферромагнетизма, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако это вносило некое противоречие, так как многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены.

Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых микроскопических (порядка 10-3 – 10-2 см.) областей – доменов, самопроизвольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, то есть ферромагнетик не намагничен.


Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как в парамагнетике, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность J (рисунок 1) и магнитная индукция B уже в слабых полях растет довольно быстро.

Рис 1

Показанное на рис.1 намагничивание такого образца (ферромагнетик) в магнитном поле, напряженность Н которого медленно увеличивается, происходит за счет двухпроцессов: смещения границ доменов и вращения магнитных моментов доменов. Процесс смещения границ доменов приводит к росту размеров тех доменов, которые самопроизвольно намагничены в направлениях, близких к направлению вектора H.

Процесс вращения магнитных моментов доменов по направлению H играет основную роль только в области, близкой к насыщению, т.е. при H близких к Hs.

Существование доменов в ферромагнетиках доказано экспериментально.

В настоящий момент установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами электронов. Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с некомпенсированными спинами. В подобных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничивания. Эти силы, называемые обменными, имеют квантовую природу – они обусловлены волновыми свойствами электронов.


Информация о работе «Ферромагнетизм. Модель Изинга»
Раздел: Физика
Количество знаков с пробелами: 12763
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
45685
0
0

... «преобразования Лоренца», «группа Лоренца», показал, что невозможно обнаружить абсолютное движение, исходя из представлений об эфире и связанной с ним привеллигированной системы отсчета. Период современной физики (1905 - 1931гг.) 1905г. А.Пуанкаре и А.Эйнштейн установили ковариантность уравнений Максвелла относительно «группы Лоренца». А.Эйнштейн выдвинул гипотезу о квантовом характере ...

0 комментариев


Наверх