5. Эксплуатационные параметры транзистора
Транзистор, как и любой другой электронный прибор, характеризуется рядом эксплуатационных параметров, предельные значения которых указывают на возможности практического применения того или иного транзистора.
К числу таких параметров относятся:
Максимально допустимая мощность Pkmax, рассеиваемая коллектором.
В общем случае мощность, рассеиваемая транзистором, складывается мощностей, рассеиваемых каждым р–n переходом:
Р = Рк + Рэ = Iк Uкб + Iэ Uэб.
Обычно в усилительном режиме
При недостаточном теплоотводе разогрев коллекторного перехода может привести к резкому увеличению тока Iк. Это в свою очередь приводит к возрастанию мощности, рассеиваемой на коллекторе, и к еще большему нагреву коллекторного перехода. Процесс приобретает лавинообразный характер, и транзистор необратимо выходит из строя. Следует учитывать также, что при повышении температуры окружающей среды предельно допустимая мощность уменьшается. Поэтому необходимо тщательно следить за режимом работы транзисторов, исключая внешний нагрев прибора, особенно работающего при повышенных мощностях.
Максимально допустимый ток коллектора.
Транзистор может выйти из строя при превышении тока коллектора свыше определенных пределов. Процесс разрушения обусловлен неравномерным прохождением тока по площади р-п перехода, местным с разогревом и последующим прожиганием.
Максимально допустимое напряжение между коллектором и общим электродом транзистора (Uкэ max или Uкб max).
Это напряжение определяется величиной пробивного напряжения перехода. Кроме того, оно зависит от мощности, тока коллектора и температуры окружающей среды.
Из соображений надежности работы схемы не рекомендуется использовать величины токов, напряжений и мощностей выше 70 % их наибольших допустимых значений. Следует, однако, отметить, что при работе в ключевом режиме значительная мощность выделяется на транзисторе только в течение перехода из открытого состояния к запертому и обратно (на активном участке характеристики). Поэтому среднее за период значение мощности, рассеиваемой в транзисторе, относительно невелико, что позволяет допускать мгновенные значения токов коллектора и эмиттера в 2 – 3 раза больше паспортных, предельных для режима усиления значений, не опасаясь перегрева транзистора.
Предельная частота усиления по току – частота, при которой коэффициент усиления по току b или α уменьшается до 0,7 (в √2 раз) своего значения на низких частотах.
Выше перечислены лишь наиболее важные эксплуатационные параметры транзисторов. В паспортах транзисторов и справочниках указывается ряд других параметров: максимально допустимый ток базы, обратный ток эмиттера, максимально допустимый импульсный ток коллектора, напряжение насыщения коллектор-эмиттер, емкость коллекторного перехода, максимальная температура работы транзистора и т.д.
6. Полевые транзисторы
Полевым транзистором называется трехэлектродный полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающих через проводящий канал, а управление величиной тока осуществляется поперечным электрическим полем, создаваемым напряжением, приложенным к управляющему электроду. Проводящий слой называют каналом, управляющий электрод – затвором.
Полевой транзистор – полупроводниковый усилительный прибор, которым управляет не ток (как биполярным транзистором), а напряжение (электрическое поле, отсюда и название – полевой), осуществляющее изменение площади поперечного сечения проводящего канала, в результате чего изменяется выходной ток транзистора. Управление же электрическим полем предполагает отсутствие статического входного тока, что позволяет уменьшить мощность, требуемую для управления транзистором.
Полевой транзистор (ПТ) в отличие от биполярного иногда называют униполярным, так как его работа основана на использовании только основных носителей заряда одного типа – либо электронов, либо дырок. Поэтому в полевых транзисторах отсутствуют процессы изменения (накопления и рассасывания) объемного заряда неосновных носителей, оказывающие заметное влияние на быстродействие биполярных транзисторов.
Два электрода на торцах канала называются истоком (И) и стоком (С). Исток и сток в принципе обратимы. Истоком служит тот из них, из которого при соответствующей полярности напряжения между истоком и стоком в канал поступают основные носители заряда, а стоком – тот, через который эти носители уходят из канала.
Подобно биполярному транзистору в зависимости от того, какой из выводов является общим для входных и выходных цепей, различают три схемы включения полевого транзистора: с общим истоком (ОИ), с общим затвором (ОЗ) и общим стоком (ОС). Наибольшее распространение на практике нашла схема с ОИ.
Все ПТ по своим конструктивным особенностям можно разделить на две группы:
1) полевые транзисторы с управляющим р-п переходом (канальные, или униполярные транзисторы);
2) полевые транзисторы с изолированным затвором (МДП- или МОП-транзисторы).
На рисунке 2.10 приведены схематическое изображение конструкции полевого транзистора с управляючим р-п переходом и схема его включения[1]. Канал образован тонким слоем полупроводника одного типа проводимости – в случае проводимостью n типа[2]. На торцах канала расположены два электрода, образующие омические выводы для подсоединения к внешним электрическим цепям. Один из них называется истоком (И), а второй – стоком (С). В средней части канала расположена небольшая зона полупроводника р типа, образующая с каналом р-п переход. Вывод, подсоединенный к областям р типа, является управляющим электродом и называется затвором (З). Выводы И, С и З соответствуют (в порядке перечисления) катоду, аноду и сетке электровакуумного триода или эмиттеру, коллектору и базе обычного биполярного транзистора.
Рисунок 2.10. Схематическое изображение конструкции и схема включения полевого транзистора с управляющим р-n переходом
Величина тока в канале зависит от напряжения, приложенного между стоком и истоком, нагрузочного сопротивления и сопротивления канала (полупроводниковой пластинки между стоком и истоком). При постоянных источнике Еc и Rн ток в канале Iс (ток стока) зависит только от электрического сопротивления канала, которое, в свою очередь определяется длиной и эффективной площадью поперечного сечения канала. На р-п переход с помощью источника Ези подается обратное напряжение, что приводит к увеличению толщины р-п перехода, уменьшению сечения канала и увеличению сопротивления между истоком и стоком. Изменение величины обратного напряжения в соответствии с входным сигналом приводит к модуляции сопротивления канала, изменению тока стока и появлению сигнала на нагрузочном сопротивлении Rн. При соответствующем подборе величины Rн можно добиться повышения уровня выходного напряжения по сравнению с напряжением на входе, т.е. усилить сигнал.
Полевые транзисторы, подобно биполярным, могут быть охарактеризованы входными и выходными характеристиками. Однако для полевых транзисторов входная характеристика (зависимость IЗ от UЗИ при фиксированном значении UСИ) не имеет практического применения так как описывала бы незначительные изменения обратного тока p-n перехода. Поэтому и при расчетах используют только передаточные и выходные ВАХ. На рисунке 2.11 приведены выходные и передаточные (зависимость тока стока от напряжения на затворе) характеристики полевого транзистора с управляющим p-n переходом для схемы включения с ОИ.
Рисунок 2.11. Статические вольт-амперные характеристики полевых транзисторов с управляющим p-n переходом (схема ОИ): а – выходные; б – передаточные (входные)
Пусть напряжение между затвором и истоком Uзи = 0. При увеличении положительного напряжения Uси на стоке ток Iс будет нарастать. Вначале зависимость Ic = f(Uc) будет почти линейной. Однако с возрастанием Iс увеличивается падение напряжения на канале (Uс = Ic Rк, где Rк – сопротивление канала). Это напряжение распределяется вдоль канала: вблизи истока оно равно нулю, а вблизи стока – максимальной величине. На р-n переходе, несмотря на нулевой потенциал затвора, появляется обратное смещающее напряжение, величина которого нарастает по направлению к истоку, что ведет к сужению сечения токопроводящего канала и замедляет рост тока Iс. В конечном итоге, при дальнейшем росте стока, у стокового конца канал сужается настолько, что дальнейшее повышение напряжения уже не приводит к росту Iс. Этот режим получил наименование название режима насыщения, а напряжение Uc, при котором происходит насыщение, называется напряжением насыщения (Uс. нас).
При подаче на затвор обратного напряжения (для ПТ с каналом п типа, как указывалось ранее, оно будет отрицательным по отношению к истоку) канал изначально будет сужен. Поэтому начальный участок зависимости Ic = f(Uc) пойдет с меньшим наклоном и насыщение наступит при меньших токах стока.
Напряжение насыщения равно Uси нас = Uзи – Uзи отс, где Uзи отс – напряжение отсечки, управляющее напряжение, при котором Iс = 0 (режим отсечки), а Uзи – управляющее напряжение, соответствующее рассматриваемой ВАХ транзистора.
При дальнейшем увеличении выходного напряжения ток Iс практически остается неизменным вплоть до пробивного напряжения Uси проб. Как видно из рисунка.2.11,а с уменьшением напряжения Uзи пробивное напряжение транзистора Uси проб уменьшается. При этом (с учетом знака Uзи) всегда выполняется равенство
(2.23)
При входном напряжении Uзи = Uзи отс, соответствующем обратному напряжению на p-n переходе (затвор–исток) при котором токопроводящий канал транзистора будет полностью перекрыт, выходной ток Iс транзистора будет равен нулю (рисунок 2.11,б).
При Uзи > Uзи отс в токопроводящем канале появляется проток и по нему от стока к истоку начинает протекать ток Iс. Зависимость Iс = F(Uзи) при Uc – const получила название стокозатворной характеристики. Выходные характеристики ПТ также часто называют стокостоковыми или, просто, стоковыми.
Полевые транзисторы с изолированным затвором имеют структуру металл–диэлектрик (окисел)–полупроводник. Поэтому, их часто называют МДП- или МОП-транзисторами.
На рисунке 2.11 приведены схематические изображения конструкций таких транзисторов с каналами п типов. Основой прибора служит пластинка (подложка) монокристаллического кремния р типа. Области истока и стока представляют собой участки кремния, сильно легированные примесью n типа[3].
Расстояние между истоком и стоком примерно 1 мкм. На этом участке (рисунок 2.11,а) расположена узкая слабо легированная полоска кремния п типа (канал). Затвором служит металлическая пластинка, изолированная от канала тонким слоем диэлектрика (толщиной долей микрометра). В качестве диэлектрика наиболее часто используют пленка двуокиси кремния, образованная из материала подложки при высокой температуре. В последнее время в качестве диэлектрика применяют другие материалы, например, нитрид кремния.
Рисунок 2.12. Схематическое изображение ПТ с изолированным затвором
Электрическое поле, возникающее от напряжения, приложенного к затвору, поникает в поверхностный слой подложки. В зависимости от полярности этого напряжения в канал может либо притягиваться, либо выталкиваться часть основных носителей заряда канала (на приведенном рисунке это электроны). При отрицательном напряжении на затворе электроны проводимости выталкиваются из области канала в объем полупроводника подложки. При этом канал обедняется носителями заряда, что ведет к уменьшению тока в канале. Положительное напряжение на затворе способствует втягиванию электронов проводимости из подложки в канал. В этом режиме, получившем название режима обогащения, ток канала возрастает.
Рисунок 2.12. Передаточная (а) и выходная (б) ВАХ МДП-транзистора со встроенным n каналом
Таким образом, в отличие от полевого транзистора с р-п переходами транзистор с изолированным затвором может работать с нулевым, отрицательным или положительным напряжением на затворе (рисунок 2.12,а). Управляющее напряжение на затворе, при котором Iс = 0, также как у ПТ с управляющим р-п переходом, называется напряжением отсечки.
Выходные характеристики полевого транзистора с изолированным затвором (рисунок 2.12,б) имеют такой же вид, как и характеристики транзистора с р-п переходами. Различие заключается лишь в том, что транзисторы с р-п переходом могут работать только в режиме обеднения (сужения) канала, а транзисторы типа МДП (или МОП) работают как в режиме обеднения (при отрицательных напряжениях на затворе), так и в режиме обогащения (при положительных напряжениях на затворе).
Рассмотренный тип ПТ с изолированным затвором получил наименование МДП (или МОП) транзисторов со встроенным каналом. Канал у него был введен (встроен) в процессе изготовления. Если же между зонами п+ под истоком и стоком отсутствует канал, то при нулевом потенциале на затворе на пути от истока к стоку окажутся два встречно включенных p-n перехода. Поэтому при подаче напряжения между стоком и истоком любой полярности выходной ток Iс окажется ничтожно мал (примерно равен обратному току p-n перехода). Если к затвору приложить небольшое положительное напряжение Uзи, то под действием поля из подложки к поверхности начнут притягиваться электроны дырки, а дырки – выталкиваться в глубину. При определенном положительном напряжении (Uзи пор), которое получило наименование порогового, в подложке под затвором образуется обогащенный электронами поверхностный слой, который замкнет области под стоком и истоком. Последующее повышение напряжения на затворе приведет к тому, что по образовавшемуся каналу потечет ток стока. Такой тип ПТ с изолированным затвором носит наименование МДП (или МОП) транзисторов с индуцированным каналом.
Рисунок 2.12. Передаточные (а) и выходные (б) ВАХ МДП-транзистора с индуцированным каналом
Напряжение на затворе, при котором возникает токопроводящий канал, называется пороговым (Uзи пор). Если выбрать подложку n типа, а области истока и стока сделать р+ типа, то получится МДП-транзистор с индуцированным р каналом.
Передаточные и выходные ВАХ для МДП-транзистора при включении с ОИ приведены на рисунке 2.12. Выходные характеристики приведены только для индуцированного канала n типа. На графике стокозатворной характеристике показан ход зависимости для МДП-транзисторов с индуцированным каналом р типа. При этом учтено, что направление тока стока для такого транзистора будет противоположным направлению тока у МДП-транзисторов с индуцированным каналом п типа.
Температурные свойства полевых транзисторов. Как ранее было отмечено, что ток полевых транзисторов обусловлен перемещением носителей заряда канала, т.е. он определяется концентрацией основных носителей. Однако известно, что концентрация основных носителей в полупроводнике почти не зависит от температуры, обусловливается концентрацией примесей. Поэтому и свойства ПТ слабо изменяются с изменением температуры.
От температуры зависят напряжение отсечки и пороговое напряжение. Это обусловлено действием в ПТ двух противоположных механизмов, происходящих при изменении температуры.
У полевого транзистора с управляющим p-n переходом при повышении температуры окружающей среды растет собственное сопротивление полупроводникового материала, что приводит к уменьшению тока стока. Этот эффект особенно сильно проявляется при больших токах стока. Однако увеличение температуры ведет к уменьшению толщины p-n перехода, что расширяет канал. Последнее вызывает увеличение тока стока, что особенно заметно при малых его значениях. Поэтому при увеличении температуры стокозатворная (передаточная) характеристика становится более пологой, а напряжение отсечки увеличивается. При некоторых значениях тока стока оба фактора компенсируют друг друга и величина тока стока не зависит от изменения температуры.
Для МДП-транзистора с увеличением температуры также характерно уменьшение тока стока, что объясняется ростом собственного сопротивления полупроводника. В то же время увеличение температуры ведет к увеличению числа пар электрон – дырка в канале, т.е. к увеличению концентрации носителей заряда. Это способствует росту тока стока, особенно при небольших его значениях. Следовательно, и в МДП-транзисторе существуют две противоположные тенденции, которые приводят к изменениям передаточной характеристики, наблюдаемым и у ПТ с управляющим переходом (рисунок 2.13).
Рисунок 2.13. Зависимость передаточных характеристик полевого транзистора от температуры
Следствием этого является наличие на передаточной характеристике прибора точки (H на рисунке), для которой ток стока не зависит от изменения температуры окружающей среды.
Основными параметрами полевых, транзисторов являются:
Крутизна характеристики:
(2.24)
Этот параметр характеризует эффективность управляющего действия затвора.
Выходное сопротивление Rвых (определяется в режиме насыщения):
(2.25)
Выходное сопротивление характеризуется тангенсом угла наклона выходных характеристик. В рабочей области этот угол близок к нулю и, следовательно, выходное сопротивление оказывается достаточно большим (сотни килоом).
Статический коэффициент усиления:
(2.26)
Эти параметры связаны между собой соотношением:
(2.27)
Напряжение отсечки (пороговое напряжение для ПТ с индуцированным каналом)– обратное напряжение на затворе, при котором токопроводящий канал окажется перекрытым.
Кроме указанных, полевые транзисторы, подобно биполярным, характеризуются рядом максимально допустимых параметров, определяющих предельные режимы работы прибора.
Эквивалентные схемы полевых транзисторов. Рассмотрим наиболее распространенные схемы замещения полевых транзисторов. На рисунке 2.14 приведены схемы замещения ПТ. В этих схемах принято, что вывод подложки электрически соединен с истоком. Такое включение наиболее часто используется при разработке схем на ПТ.
Рисунок 2.14. Эквивалентные схемы полевого транзистора с управляющим p-n переходом (а) и изолированным затвором (б)
Следует отметить, что входное и выходное сопротивления ПТ носят явно выраженный емкостный характер, т.к. конструкция полевого транзистора обуславливает наличие больших входных и выходных емкостей. Поэтому увеличение частоты входного сигнала приводит к фактическому падению коэффициента усиления каскада на полевом транзисторе. При увеличении частоты входного сигнала входной ток полевого транзистора, определяемый его входной емкостью, растет, что эквивалентно снижению значения коэффициента усиления. Поэтому принято считать, что в общем случае по быстродействию, усилению и частотным свойствам полевой транзистор, как правило, не имеет преимуществ перед биполярным транзистором.
К важнейшим достоинствам полевых транзисторов следует отнести:
1. Высокое входное сопротивление, достигающее в канальных транзисторах с р-п переходом величины 108–109 Ом, а в транзисторах с изолированным затвором 1013 – 1016 Ом. Такое высокое значение входного сопротивления объясняется тем, что в первых управляющий переход включен в обратном направлении, а в транзисторах с изолированным затвором входное сопротивление определяется очень большим сопротивлением утечки диэлектрического слоя.
2. Малый уровень собственных шумов, т.к. в полевых транзисторах в формировании тока участвуют заряды только одного знака, что исключает появление рекомбинационного шума.
3. Высокая устойчивость к температурным и радиоактивным воздействиям.
4. Высокая плотность расположения элементов при использовании приборов в интегральных схемах.
Полевые транзисторы могут быть использованы в схемах усилителей, генераторов, переключателей. Особенно широко применяются они в малошумящих усилителях с высоким входным сопротивлением. Весьма перспективным является также использование их (с изолированным затвором) в цифровых и логических схемах.
[1] При ее анализе все напряжения будем рассматривать с учетом их знаков.
[2] Принцип действия транзисторов с каналом типа п или р аналогичен; различие заключается лишь в полярности напряжений источников питания.
[3] Если концентрации основных носителей заряда в контактируемых полупроводниковых областях резко отличаются (на два порядка и более), то область с большей концентрацией отмечается символом +
... Образования Республики Молдова Технический Университет Молдовы Факультет Радиоэлектроники и Телекоммуникаций Кафедра Телекоммуникаций Курсовая работа по дисциплине Радиоэлектроника I Тема: Анализ и моделирование биполярных транзисторов. Выполнил: Студент группы TLC-034 Раецкий Николай Проверил: Зав.кафедрой Телекомуникаций ...
... тиристорами или симисторами, обеспечивая при этом гальваническую развязку цепей управления. Малое потребление цепи управления позволяет включать СИТАК к выходу микропроцессоров и микро-ЭВМ. Биполярные транзисторы с изолированным затвором (БТИЗ) выполнены как сочетание входного униполярного (полевого) транзистора с изолированным затвором (ПТИЗ) и выходного биполярного п-р-и-транзистора (БТ). ...
... (Металл- Окисел- Полупроводник), который нашел широкое применение в качестве основного элемента всех современных интегральных микросхем КМОП структуры. МОП – ТРАНЗИСТОРЫ 1. Устройство полевого транзистора. Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал и управляемый ...
... на усилительных и частотных свойствах транзистора. Однако то, что толщина базы дрейфовых транзисторов мала, полностью окупает недостатки, связанные с наличием участка тормозящего поля в базе. Расчет параметров и характеристик дрейфовых транзисторов осложнен тем обстоятельством, что концентрация легирующей примеси в слоях транзистора зависит от координаты. Зависят от координаты подвижность, ...
0 комментариев