МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
"ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ"
ФИЛИАЛ В Г. НЕФТЕЮГАНСКЕ
КАФЕДРА РАЗРАБОТКИ И ЭКСПЛУАТАЦИИ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ
КУРСОВОЙ ПРОЕКТ
НА ТЕМУ:
ГИДРОДИНАМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ СКВАЖИН НА ПРИОБСКОМ МЕСТОРОЖДЕНИИ
Студент
Руководитель Филин В.В.
2008
Содержание
Введение
1. Общая часть
1.1 Географо-экономические сведения о районе работ
2. Геологическая часть
2.1 Геологическое строение месторождения и залежей
2.1.1 Литостратиграфический разрез
2.2 Нефтеносность
3. Техническая часть
3.1 Испытание и опробование пластов в процессе бурения скважин
4. Технологическая часть
4.1 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов
4.1.1 Анализ методов обработки материалов исследований, применявшихся в актах испытаний скважин
4.2 Технология исследований добывающих скважин
4.2.1 Анализ методов обработки материалов исследований добывающих скважин
4.3 Оценка изменения фильтрационных параметров пластов по площади
4.4 Гидродинамические исследования скважин при забойном давлении ниже давления насыщения
4.5 Оценка состояния призабойной зоны скважин по данным гидродинамических исследований
5. Экономическая часть
5.1 Определение стоимости проведения гидродинамического исследования
5.2 План работ на скважине № 1002 Приобской площади в интервале 2558 - 2570 м
6. Охрана окружающей среды и недр
6.1 Характеристика месторождения как источника загрязнения окружающей среды
6.1.1 Деятельность НГДУ по охране окружающей среды
6.2 Освоение и гидродинамические исследования скважин
7. Специальная часть
Библиография
Кривые восстановления (падения) забойных давлений (КВД-КПД) являются одним из известных и распространенных методов гидродинамических исследовании скважин на неустановившихся режимах фильтрации.
Под гидродинамическими исследованиями скважин (ГДИС) понимается система мероприятий, проводимых на скважинах по специальным программам: замер с помощью глубинных приборов ряда величин (изменения забойных давлений, дебитов, температур во времени и др., относящихся к продуктивным нефтегазовым пластам), последующая обработка замеряемых данных, анализ и интерпретация полученной информации о продуктивных характеристиках - параметрах пластов и скважин и т д.
За последние годы были разработаны дистанционные высокоточные глубинные электронные манометры с пьезокварцевыми датчиками давления и глубинные комплексы с соответствующим компьютерным обеспечением (так называемые электронные манометры второго поколения) Применение таких манометров и комплексов позволяет использовать при анализе новые процедуры, резко улучшающие качество интерпретации фактических данных и количественно определяемых параметров продуктивных пластов. Особо остро стоят эти вопросы при разработке сложно построенных месторождений, при бурении, эксплуатации и исследовании горизонтальных скважин.
В общем комплексе проблем разработки месторождений углеводородов важное место занимает начальная и текущая информация о параметрах пласта - сведения о продуктивных пластах, их строении и коллекторных свойствах, насыщающих флюидах, геолого-промысловых условиях, добывных возможностях скважин и др. Объем такой информации о параметрах пласта весьма обширен.
Источниками сведений о параметрах пласта служат как прямые, так и косвенные методы, основанные на интерпретации результатов исследований скважин геолого-геофизических исследований, лабораторных изучений образцов породы (кернов, шлама) и проб пластовых флюидов при различных термобарических условиях (исследования РVТ, изучаемой физикой пласта), данных бурения скважин и специального моделирования процессов фильтрации ГДИС.
Обработка и интерпретация результатов ГДИС связана с решением прямых и обратных задач подземной гидромеханики. Учитывая, что обратные задачи подземной гидромеханики не всегда имеют единственные решения, существенно отметить комплексный характер интерпретации данных ГДИС с широким использованием геолого-геофизических данных и результатов лабораторных исследований РVT.
Гидродинамические исследования скважин направлены на решение следующих задач:
измерение дебитов (приемистости) скважин и определение природы флюидов и их физических свойств;
измерение и регистрация во времени забойных и пластовых давлений, температур, скоростей потоков и плотности флюидов с помощью глубинных приборов (датчиков) и комплексов;
определение (оценка) МПФС и параметров пластов - гидропроводности в призабойной и удаленных зонах пласта, скин-фактора, коэффициентов продуктивности (фильтрационных сопротивлений) скважин; пространственного распределения коллекторов, типа пласта коллектора (его деформационных свойств), положения экранов, сбросов и границ (зон пласта), взаимодействия скважин; распределения давления в пласте, типов фильтрационных потоков и законов фильтрации в пласте и других параметров - по результатам обработки и интерпретации данных измерений и регистрации давлений и дебитов различными типами и видами ГДИС,
оценка полученных результатов, т.е. проверка на адекватной МПФС, и исходных замеренных данных.
Приобское месторождение расположено в Ханты-Мансийском районе Ханты-Мансийского автономного округа Тюменской области. В географическом отношении месторождение находится в центральной части Средне-Обской низменности Западно-Сибирской равнины.
Район работ удален на 65 км к востоку от Ханты-Мансийска, на 100 км к западу от г. Нефтеюганска. В настоящее время район относится к числу наиболее экономически быстро развивающихся в автономном округе. Вблизи района ведется разработка крупных месторождений: Приразломного, расположенного в непосредственной близости, Салымского, расположенного в 20 км на восток от Приобского месторождения и Правдинского, в 57 км на юго-восток от района работ. Абсолютные отметки рельефа составляют 30 - 55 м.
Наиболее крупными населенными пунктами, ближайшими к площади работ, являются города Ханты-Мансийск, Нефтеюганск, Сургут, из более мелких населенных пунктов - поселки Селиярово, Сытомино, Лемпино и др.
В г. Ханты-Мансийске находится объединение "Ханты-мансийскнефтегаз-геология", нефтеразведочные экспедиции которого ведут большой объем нефте- и газопоискового и разведочного бурения на площадях Сургутского, Салымского и др. нефтегазоносных районов Тюменской области.
Разведочное бурение на площади проводилось силами Правдинской и Назымской нефтегазоразведочных экспедиций. База Правдинской НГРЭ находится в пос. Горноправдинске, расположенном на р. Иртыш в 120 км к юго-западу от площади работ. База Назымской НГРЭ находится в г. Ханты-Мансийске.
Площадь работ характеризуется значительной заболоченностью и заозеренностью, создающими трудные условия для передвежения наземного транспорта. Основным средством сообщения являются авиатранспорт и водный транспорт, в зимний период передвижение возможно по зимникам. Разработку месторождения ведет Нефгегазодобывающее управление "Правдинскнефть", базирующееся в пос. Пойковский. Транспортировка нефти идет по нефтепроводу с начала разработки.
Источником временного водоснабжения для буровых установок служат реки, ручьи и озера, но поверхностные воды подвержены сильному загрязнению, требуют дополнительной очистки и не могут использоваться постоянным и надежным источником водоснабжения. Практическую ценность для организации водоснабжения промысловых объектов Приобского нефтяного месторождения представляют подземные воды верхнего гидрогеологического этажа, в котором выделяются следующие горизонты:
1 - водоносный горизонт четвертичных отложений;
2 - водоносный горизонт новомихайловских отложений (надмерзлотный);
3-водоносный горизонт атлымских отложений. Сравнительный анализ водоносных горизонтов показывает, что в качестве основного источника крупного (30-100 тыс. мЗ/сут) централизованного хозяйственно-питьевого водоснабжения в Широтном Приобье, территориально включающего в себя Приобское нефтяное месторождение, может быть принят атлымский водоносный горизонт, как наиболее водообильный, обладающий значительными естественными ресурсами и достаточно высокими фильтрационными свойствами и находящийся в благоприятных условиях естественной защищенности от поверхностного загрязнения.
Для заводнения нефтяных пластов на месторождениях Среднего Приобья широко используются подземные воды апт-сеноманского комплекса, сложенного слоистой толщей слабосцементированных рыхлых песков, песчаников, алевролитов и глин уватской, ханты-мансийской и викуловской свит, хорошо выдержанных по площади, довольно однородных в пределах района.
В районе работ четвертичные отложения озерно-аллювиального, аллювиального и озерно-болотного характера перспективны для выявления месторождений стройматериалов. На Приобском, Салымском и др. месторождениях, вблизи г. Сургута, Нефтеюганска, Ханты-Мансийска, Горноправдинска открыт и разведан ряд месторождений песка, песчано-гравийной смеси, керамзитовых глин. Вблизи района известно несколько месторождений строительного сырья:
Калиновореченское (песчано-гравийной смеси), Черногорское (песков), Локосовское (керамзитовых и кирпичных глин). Известны небольшие месторождения песчано-гравийной смеси: Белоярское I и II, Калиновореченское, а также Лемпинское. В Ханты-Мансийском районе имеются Ханты-Мансийское и Назымское месторождения строительных песков и песчано-гравийной смеси. На самом Приобском месторождении изысканы месторождения песка (в р-не скв. №181) под гидромеханизированную разработку, а также месторождение песка (в р-не скв. №241) под разработку открытым способом.
Геологический разрез Приобского месторождения сложен мощной толщей (более 3000м) терригенных отложений осадочного чехла мезо-кайнозойского возраста, залегающих на породах доюрского комплекса, представленных корой выветривания.
Доюрские образования (Рz)
В разрезе доюрской толщи выделяется два структурных этажа. Нижний, приуроченный к консолидированной коре, представлен сильно дислоцированными графит порфиритами, гравелитами и метаморфизованными известняками. Верхний этаж, выделяемый как промежуточный комплекс, составляют менее дислоцированные эффузивно-осадочные отложения пермо-триасового возраста толщиной до 650м.
Юрская система (J)
Юрская система представлена всеми тремя отделами: нижним, средним и верхним.
В ее составе выделяются тюменская (J1 +2), абалакская и баженовская свиты (J3).
Отложения тюменской свиты залегают в основании осадочного чехла с угловым и стратиграфическим несогласием и представлены комплексом терригенных пород глинисто-песчано-алевролитового состава.
Толщина отложений тюменской свиты изменяется от 40 до 450 м. В пределах месторождения они вскрыты на глубинах 2806-2973 м. Отложения тюменской свиты согласно перекрываются верхнеюрскими отложениями абалакской и баженовской свит. Абалакская свита сложена темно-серыми до черного цвета, участками известковистыми, глауконитовыми аргиллитами с прослоями алевролитов в верхней части разреза. Толщина свиты колеблется от 17 до 32 м.
Отложения баженовской свиты представлены темно-серыми, почти черными, битуминозными аргиллитами с прослоями слабоалевритистых аргиллитов и органогенно-глинисто-карбонатных пород. Толщина свиты составляет 26-38 м. Меловая система (К)
Отложения меловой системы развиты повсеместно, представлены верхним и нижним отделами. Общая толщина свиты изменяется с запада на восток от 35 до 415 м
Палеогеновая система (Р)
Палеогеновая система включает в себя породы талицкой, люлинворской, тавдинской, атлымской, новомихайловской и туртасской свит. Первые три представлены морскими отложениями, остальные - континентальными.
Четвертичная система (Q)
Присутствует повсеместно и представлена в нижней части чередованием песков, глин, суглинками и супесями, в верхней - болотными и озерными фациями - илами, суглинками и супесями. Общая толщина составляет 70-100 м.
Рисунок 2.1.1 Западная Сибирь. Модель комплекса Неокома (шельфовая платформа)
А - средневзвешенные по площади скорости осадконакопления; Б - площади развития глинистых осадков, связанных с относительно глубоководными фациями; В - общие площади седиментации.
Рисунок 2.1.2 Схема региональной цикличности осадочного чехла Западной Сибири (сейсмогеологический прогноз..., 1992)
2.2 НефтеносностьНа Приобском месторождении этаж нефтеносности охватывает значительные по толщине отложения осадочного чехла от среднеюрского до готеривбарремского возраста и составляет около 1 км.
Непромышленные притоки нефти и керн с признаками углеводородов получены из отложений тюменской (пласты Ю1 и Ю3) и баженовской (пласт Ю0) свит. Из-за ограниченного числа имеющихся геолого-геофизических материалов, модели строения залежей к настоящему времени не достаточно обоснованы.
Промышленная нефтеносность установлена в неокомских пластах группы АС, где сосредоточено более 90%. разведанных запасов. Основные продуктивные пласты заключены между пимской и быстринской пачками глин. В составе продуктивных неокомских отложений выделено 9 подсчетных объектов: АС7, АС9, АС010, АС1-210, АС011, АС111, АС211, АС3-4 12
Все залежи нефти являются литологическими или литолого-стратиграфическими и относятся к категории сложнопостроенных. Характерна резкая изменчивость литолого-физических свойств пород-коллекторов как по разрезу, так и по латерали, что обусловлено условиями их формирования в краевой части палеошельфа и склона аккумулятивной террасы. Области развития песчаных тел практически не контролируются современным структурным планом, продуктивность неокомских отложений Приобского месторождения определяется наличием в разрезе проницаемых пластов-коллекторов. Все это обусловило очень сложное геологическое строение песчано-алевролитовых тел, которое затрудняет интерпретацию данных геофизических, и сейсмических исследований, а также оценку фильтрационно-емкостных свойств коллекторов и их насыщение.
Залежи нефти горизонтов АС10, АС11, АС12 представляют собой замкнутые линзовидные тела, полностью заполненные нефтью, о чем свидетельствует отсутствие пластовой воды при многочисленных испытаниях скважин.
В настоящее время в мировой практике испытания и опробование пластов в бурящихся скважинах наметились одни и те же направления развития техники и технологии проведения указанных работ. У нас в стране, так же как и за рубежом, ведутся работы по созданию и применению следующих методов испытания и опробования пластов:
испытание продуктивных горизонтов при помощи испытателей пластов, спускаемых в скважину на трубах (с опорой и без опоры на забой):
опробование пластов без подъема бурильного инструмента на поверхность;
опробование пластов при помощи опробователей, спускаемых в скважину на кабеле или металлическом тросе.
Испытание продуктивных горизонтов при помощи испытателей пластов, спускаемых в скважину на трубах, с опорой на забой
Данный вид испытания пластов требует прекращения бурения, подъема бурильного инструмента на поверхность, сборки и спуск в скважину специального забойного инструмента - испытателя пластов.
Инструмент в скважину спускают на пустых, либо частично заполненных бурильных трубах, поэтому имеется возможность отбора больших объемов жидкостей из пласта. Практически при испытании пластов указанными испытателями можно производить пробную эксплуатацию скважины.
Рисунок 3.2.1 Схема испытания пластов с опорой на забой
Такая особенность технологии испытания пластов позволяет получать необходимую информацию о пласте и выявлять добывные перспективы данного геологического разреза. Поэтому этот вид испытаний пластов получил наиболее широкое распространение за рубежом и у нас в стране.
В процессе испытаний продуктивных горизонтов при помощи испытателей пластов, спускаемых в скважину на трубах, как правило выполняют два цикла испытаний. В первый цикл входят начальный открытый период испытания (период притока) и начальный закрытый период испытания (период восстановления давления). Второй цикл, включает конечный открытый и конечный закрытый периоды испытания. Для получения более достоверной информации испытаний за последнее время на отечественных месторождениях и в США применяется метод многоциклового испытания, в процессе которого выполняют до четырех циклов испытания (четыре открытых и четыре закрытых периода). При обычном испытании пластов с опорой инструмента на забой (рис3.2.1, а) в компоновке испытателя применяют один пакер и испытываемый объект изолируется им от вышерасположенного ствола скважины. Приток жидкости (газа) из пласта происходит из всего вскрытого интервала через подпакерное пространство скважины. Поэтому при наличии нескольких прослоев с разной проницаемостью невозможно определить, из какого интервала получен приток пластовой жидкости.
При поинтервальном испытании пластов с опорой инструмента на забой (рис.3.2.1, б) испытываемый объект изолируется от ствола скважины сверху и снизу при помощи двух пакеров. Приток жидкости (газа) из пласта происходит только из интервала скважины, изолированного пакерами, поэтому возможно испытание отдельных прослоев пласта. Однако такие испытания при помощи испытателей пластов с опорой на забой могут проводиться, если испытываемый пласт расположен на небольшой высоте от забоя скважины.
Указанный комплект узлов испытательного инструмента позволяет создавать необходимые режимы притока жидкости из пласта в инструмент и восстановления давления в процессе испытания пластов. Его применяют как в отечественной, так и в зарубежной практике испытания пластов в процессе бурения скважин.
Комплекты испытательных инструментов
На отечественных месторождениях применяют комплекты испытательных инструментов (КИИ) трех типоразмеров (КИИ2М-146, КИИ2М-95 и КИИМ-65), разработанные СевКавНИПИнефтью, ВНИИНПГ и предназначающиеся для испытания пластов в скважинах диаметром 75-295 мм (табл.3.2.1).
ТАБЛИЦА 3.2.1
Показатели | Тип инструмента | ||
КИИ2М-146 | КИИ2М-95 | КИИМ-66 | |
Наружный диаметр корпуса, мм | 146 | 95 | 67 |
Диаметр пакеруещего элемента, мм | 170-270 | 65-145 | 67-95 |
Максимальная длина узла, м | 2.3 | 2.5 | 2.575 |
Длина полной компоновки, м | 16,59 | 18,18 | 18.465 |
Максимальная масса узла, кг | 200 | 110 | 50 |
Масса полного комплекта, кг | 1200 | 910 | 325 |
Допустимый перепад давления на пакере, кгс/см2 | 350 | 350 | 350 |
Допустимая забойная температура, 0С | 170 | 170 | 170 |
Допутимые осевые усилия, тс: | |||
при сжатии | 30 | 10 | 4,5 |
при растяжении | 60 | 25 | 15 |
Диаметр скважины, мм | 190-295 | 108-161 | 75-112 |
Для регистрации и записи давления в процессе испытания продуктивных горизонтов в отечественных конструкциях испытателей пластов применяют глубинные регистрирующие манометры, рассчитанные на предельные давления.
... , интересных с точки зрения нефтенасыщенности, в разрезе скважины нет. В связи с тем, что расстояние до нефтесборной сети более 5км., скважина подлежит консервации. Пример проведения гидродинамических исследований Скважина № 1478 Приразломного месторождение Интервал испытания: 2716-2753,6 м Дата испытания: 17 ноября 1995 г Пласт БС16-18 Условия испытания: Испытание проведено в обсаженном ...
... уровня при периодическом фонтанировании проводится исследование методом восстановления давления. При постоянном фонтанировании согласно обычной технологии скважина закрывается на КВД после последнего режима исследований методом "установившихся" отборов. При периодическом фонтанировании скважина закрывается на КВД после подъема уровня до устья скважины, т.е. перед началом ее фонтанирования. Так ...
... , так как часть нагнетательных скважин находится в отработке на нефть. 3.4 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов На Южно - Ягунском нефтяном месторождении проводится обязательный комплекс гидродинамических исследований скважин. Он включает замеры: - дебитов добывающих скважин, - приемистости нагнетательных скважин, ...
... данных о параметрах пласта, соотношении давления насыщения и пластового давления, необходимо установить гидродинамическую связь данной залежи с законтурной областью. Связь эта может проявляться различным образом. В практике разработки нефтяных месторождений возможны случаи взаимодействия соседних месторождений, входящих в единую водонапорную систему. Влияние соседних месторождений необходимо ...
0 комментариев