2.13.1 Розрахунок викидної лінії

Приймаємо викидну лінію, яка залишилась після фонтанування свердловини, оскільки вона знаходиться в доброму технічному стані і забезпечить заданий відбір рідини.

2.13.2 Підбір газового якоря

Визначаємо площу сепараторного перерізу газового якоря за формулою:

Fя = 65 ∙ 10-4 ∙ ((Fпл ∙ Sn) / (a ∙ δ)) ∙ , м2 (2.29)

 

Fя = 65 ∙ 10-4 ∙ ((0,00066 ∙ 1,8 ∙ 4,5) / (0,6 ∙ 0,02 ))∙ = 8 ∙ 10-5

де : v – кінематична в′язкість рідини,м2/с;

а – коефіцієнт використання об′єму якоря;

б – діаметр відділюваних бульбашок газу, м.

Задаючись діаметром всмоктуючої труби d3 = 48,3 мм визначаємо діаметр корпусу газового якоря за формулою :

Дя = , м (2.30)

Дя =  = 0,0493 м

де: Fя – площа сепараційного перерізу газового якоря, м.

Для корпусу якоря приймаємо труби по ГОСТ 633-80, умовного діаметру 60мм.

Уточнюємо площу сепараційного перерізу якоря :

Fя = 0,785 ∙(Д’2я - ), м2 (2.31)

 

Fя = 0,785 ∙ (0,04932 –0,04832) = 7,665 ∙ 10-5 , м2

де Д’я – прийнятий за ГОСТ 633-80 діаметр труб для багатокорпусного якоря, м.

Кількість корпусів якоря визначаємо за формулою :

пк = Fя / Fя (2.32)

 

пк = (8 ∙ 10-5 ) / ( 7,665 ∙ 10-5) = 1,043

де: Fя – площа сепараційного перерізу якоря, м.

Отже, для якоря буде достатній один корпус.

Приймаємо однокорпусний газовий якір ЯГ-1.

Довжину корпусу однокорпусного якоря визначаємо за формулою :

lя = (20 ∙ Д’я ) / пк , м (2.33)

lя = (20 ∙ 0,0603) / 1 = 1,2, м

Приймаємо lя = 1,5 м.

2.14  Автоматизація роботи свердловини

 

Автоматизація свердловини, обладнаної ШСНУ може бути місцевою (локальною) і дистанційною. При місцевій автоматизації насосні свердловини обладнуються станцією управління типу БУС-3М, електроканатним манометром типу ВЕ-16 РБ для контролю затрубного тиску. Станція управління складається з таких основних частин :

·  силової частини, призначеної для управління електродвигунами верстата-качалки;

·  блоку управління і захисту, який забезпечує формування сигналів управління, контроль стану обладнання верстата-качалки і формування сигналу аварійного відключення;

·  первинного перетворювача тиску, призначеного для формування аварійного сигналу при підвищенні або зниженні тиску в викидному трубопроводі.

Така система забезпечує :

·  автоматичне управління електродвигуном верстата-качалки в аварійних випадках ( при обриві штанг і поломках редуктора, при струмових пере навантаженнях, коротких замиканнях і обривах фаз, неполадках насоса );

·  відключення електродвигуна по імпульсу від електроконтактного манометра при аварійних ситуаціях на груповій замірній установці;

·  індивідуальний само запуск верстата-качалки після перерви в постачанні електроенергією;

·  програмний запуск і зупинка електродвигуна при періодичній експлуатації свердловини.

Аварійний стан встановлюється з допомогою аналізатора який споживає потужність електродвигуна. При допомозі аналізатора потужності можна одержати інформацію для діагностики свердловинного обладнання ( поломка каналів, обрив штанг ). Передбачено і ручне управління роботою верстата-качалки. Є також система контролю рівня рідини в свердловині типу СКУ-1М «ЕХО» з глибиною замирювання до 3000 м при тиску газу в затрубному просторі до 15 мПа.

У випадку місцевої ( локальної ) автоматизації при передачі інформації на невеликі відстані, застосовуються пневматичні і електричні перетворювачі інформації на великі відстані між контролюючим пунктом (КП) і пунктом управління ( ПУ ) застосовуються засоби телемеханіки, які передбачають інформацію у вигляді дискретних ( цифрових ) сигналів, представлених кодовими комбінаціями , тобто використовуються аналогоцифрові і цифроаналогові перетворювачі. При місцевій і дистанційній автоматизації датчики технологічних параметрів вимірюють значення цих параметрів і дозволяють одержати на виході стандартний ( аналоговий ) сигнал, пропорційний цьому значенню.

Для телемеханізації технологічних об’єктів в нафтовій промисловості застосовують систему телемеханіки ТМ-620. Вона включає в себе пункт управління і контролюючі пункти. Ця система забезпечує телеуправління двопозиційними виконуючими пристроями ТУ, телевимірювання інтегральних ( дебіт ) ТНН і поточних ( тиск ) ТНТ значень параметрів, телединамометрування ( телеконтроль ) ТД, телесигналізацію аварійного стану об’єктів ТСА, телесигналізацію стану двопозиційного об’єкту ТСС, а також двосторонній телефонний зв’язок.


Информация о работе «Підбір обладнання для збільшення видобутку нафти з допомогою штангового глибинного насоса»
Раздел: Геология
Количество знаков с пробелами: 76263
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
64035
5
0

... і параметри насосу 4Р – 700 Таблиця 2.2 Передача Ідеальна продуктивність м3/с Тиск, МПа І 0,0063 70 ІІ 0,0085 54 ІІІ 0,012 38 ІV 0,015 30,5 Загальний к.к.д. агрегата 0,75 2.6 Розрахунок прямої промивки піщаної пробки Втрати опору на гідравлічні опори при русі рідини в насосно-компресорних трубах на кожній швидкості агрегата визначається за формулою:  , м, (2.1) ...

Скачать
57699
16
0

... 5608 14,8 4704 12,8 4067 12,2 з них простої 5608 14,8 4704 12,8 4067 12,2 в т. ч. по причині несправності підйомників 713 12,7 1677 35,7 2843 69,9 Роботи не зв’язані з ремонтом свердловин 4895 87,3 3027 64,3 1224 30,1 Баланс календарного часу роботи бригади підземного ремонту свердловин (таблиця 3.3.2) Роки 1996 % 1997 % 1998 ...

0 комментариев


Наверх