2. Движение подземных вод в водоносных пластах. Определение скорости движения подземных вод
Для определения направления движения подземных вод используют карты гидроизогипс, на которых в виде изолиний показан «рельеф» зеркала грунтовых вод. Перпендикуляры к гидроизогипсам, направленные в сторону снижения отметок, называются линиями тока, показывающими направление движения грунтовых вод.
По взаимному расположению гидроизогипс и линий тока потоки грунтовых вод разделяют на плоские и радиальные (рис. 3).В плоском потоке гидроизогипсы в плане имеют вид параллельных прямых и линии тока при пересечении с ними образуют сеть прямоугольников. Плоский поток может иметь место в междуречьях; между рекой и дреной, текущими параллельно; в случае дренирования грунтовых вод горизонтальными выработками (канавами, штольнями).
В радиальном потоке гидроизогипсы представляют соб»й систему кривых линий, а линии тока имеют вид радиусов. Наиболее наглядным примером радиального потока может быть приток воды в колодец или скважину во время интенсивного водоотбора. Радиальный поток может быть расходящимся (например, возле излучины реки) и сходящимся (к водозабору). При расходящемся потоке ширина его по направлению движения увеличивается, а при сходящемся, наоборот, уменьшается.
График изменения содержания ионов хлора в подземных водах при определении действительной скорости потока
Скорость движения подземных вод можно определить несколькими способами. Один из них основан на введении в воду поваренной соли. На некотором расстоянии от опытной скважины (шурфа или колодца) проходят наблюдательную скважину, которую закладывают ниже по направлению движения подземных вод. Перед началом опыта определяют содержание хлора в опытной и наблюдательной выработках. Затем в опытную выработку вводят раствор поваренной соли, в котором концентрация ионов хлора в 2000 раз выше, чем в подземных водах. Естественно, время ввода соли (t1) необходимо отметить. Через каждые 10 мин из наблюдательной скважины отбирают пробы воды и при помощи азотнокислого серебра определяют содержание хлора. Данные анализов наносят на график (рис, 3) и находят время прохождения пика (t2). Действительная скорость
(8)
Где l - расстояние между выработками, м.
Этот способ очень удобен, но применение его невозможно при естественном содержании хлора в воде свыше 500—600 мг/л и при резких неровностях водоупорного слоя. В первом случае анализами трудно определить изменения содержания хлора, во втором — более тяжелый, чем вода, раствор поваренной соли может задержаться в понижениях водоупора.
Можно также применять органические красители, присутствие которых в воде обнаруживается при ничтожно малых концентрациях (до 10-6 %). Для этого применяют флуоресцеин, имеющий при слабых концентрациях зеленовато-желтый цвет, метиленовый синий краситель и др. Для определения содержания красителя в воде используют флюороскоп — набор стеклянных трубок с разной концентрацией красителя. Сравнивая цвет воды в отобранных пробах с цветом трубок-эталонов, легко и быстро можно определить содержание красителя в пробе воды. Затем строят график изменения во времени содержания красителя в воде и аналогично вышеописанному способу определяют скорость движения подземных вод.
Скорость движения подземных вод можно определять и электролитическим способом. Для этого в опытную скважину вводят электролит (обычно хлористый аммоний) и следят за изменением электропроводимости между опытной и наблюдательной скважинами. Для этой цели используют миллиамперметр, по данным которого строят график изменения силы тока во времени.
Новейшие достижения физики и химии позволяют использовать «меченные атомы» — изотопные индикаторы. Высокая чувствительность и простота радиоактивных измерений позволяют фиксировать минимальное количество изотопов в подземных водах.
3. Установившееся и неустановившееся движение подземных вод. Методы моделирования фильтрации
Установившимся считается движение подземных вод, при котором уровни и все другие элементы водного потока являются постоянными во времени. Если же уровни воды в одних и тех же точках изменяются во времени, то такое движение называется неустановившимся.
Большинство расчетных формул по динамике подземных вод основано на допущении, что условия питания и дренирования подземных вод постоянны. В действительности эти условия могут изменяться в зависимости от естественных или искусственных причин. К естественным причинам относятся изменения количества атмосферных осадков и величины испарения, таянье снега, паводки. Среди искусственных причин большое значение имеют водозаборы, орошение, строительство водохранилищ и т. п.
Если водоносный пласт на всем своем протяжении имеет одинаковый литологический состав, то он называется однородным. Если же литологический состав водоносного пласта изменяется в горизонтальном или в вертикальном направлении (что встречается в природе гораздо чаще), то водоносный пласт называется неоднородным.
Для моделирования фильтрации в основном используются гидравлическая и электрическая аналогии, реализуемые на сплошных и сеточных моделях.
Сплошные гидравлические модели, представленные фильтрационными лотками различных видов, в гидрогеологических расчетах применяются редко.
В развитии методов моделирования фильтрации подземных вод основная роль принадлежит сплошным и сеточным электрическим моделям, основанным на использовании метода электрогидродинамических аналогий (ЭГДА), сущность которого наглядно представляется сопоставлением основных законов движения фильтрационного потока и электрического тока:
закон Дарси и закон Ома
и (9)
где Q — расход; F — площадь поперечного сечения потока; Н — напор; х-—расстояние;I— сила тока; с — удельная проводимость, ; р — удельное сопротивление; площадь поперечного сечения проводника; U — электрический потенциал, l — длина проводника.
Приведенная формула закона Ома получена путем несложных преобразований
; (10)
где R — сопротивление.
Идентичность записи законов Дарси и Ома очевидна. В них соответствуют физические характеристики — коэффициент фильтрации Кф и удельная проводимость с (физическое подобие), силовые характеристики — напор Н и потенциал U(динамическое подобие) и, наконец, расход потока Q и сила тока (кинематическое подобие).
На сплошных моделях ЭГДА фильтрационный поток моделируется сплошным электрическим полем, геометрически подобным. Для этого применяются электропроводная бумага и электролиты. Электропроводная бумага изготавливается с удельным сопротивлением от 100 до 100 000 Ом/см, в зависимости от количества содержащихся в ней сажи и графита.
Участки поля с различной проницаемостью пород моделируются кусками бумаги различной удельной проводимости. Между собой участки модели скрепляются специальным электропроводным клеем.
Электролиты также широко используются в качестве материала модели и обычно представляют собой растворы солей, причем наибольшее распространение получили водные растворы поваренной соли и медного купороса. Кроме того, можно использовать электропроводные краски, клеи, электропроводный картон, гипс и т. д.
Определение приведенного потенциала на моделях ЭГДА производится с помощью мостовой измерительной схемы.
При составлении сеточных моделей поток разбивается на отдельные блоки, центры которых связываются электрическими резисторами. В таких моделях геометрическое подобие модели и объекта не сохраняется.
площадного прослеживания. Результаты откачки t, час ,час S0,м S1,м S2, м 0.083 -2,49 17,15 2,26 0,36 0.167 -1,79 18,13 3,07 0,87 1.0 0 20,61 5,68 2,82 2.0 0,69 21,66 6,60 3,81 5,0 1,61 22,97 7,97 5,12 10,0 2,3 23,96 8,89 6,10 24,0 3,18 25,2 10,13 7,35 35,0 3,56 25,8 10,71 7,92 48,0 3,87 26,18 11,12 8,33 60,0 4,09 26,5 11,43 ...
... района работ. Характеристика месторождения подземных вод Перспективными для организации централизованного водоснабжения поселка и предприятия на исследуемом участке являются напорные подземные воды в горизонте трещиноватых известняков эоценового возраста. Известняки перекрыты практически непроницаемой толщей чаганских глин мощностью 50 м. Выше залегают четвертичные отложения. Месторождение ...
... скважиной № 62р. При этом будет изучена взаимосвязь девонских комплексов и изменение химизма подземных вод в разрезе. VI. ПРЕДВАРИТЕЛЬНАЯ ОЦЕНКА ЗАПАСОВ МЕСТОРОЖДЕНИЯ ПОДЗЕМНЫХ ВОД 4.1 Краткие сведения о месторождении подземных вод “Ростань” На территории Борисоглебского района в период с 1964 по 1983 гг. проводились различные гидрогеологические изыскания источников ...
... - Агриколлы, Палисси, Стено и др. В России первые научные представления о подземных водах как о природных растворах, их образовании путем инфильтрации атмосферных осадков и геологической деятельности подземных вод были высказаны М.В.Ломоносовым в сочинении «О слоях земных» (1763 г.). До середины 19 века учение о подземных водах развивалось как составная часть геологии. Затем оно обособляется в ...
0 комментариев