2.1 Рефракция лучей

Голландский математик В. Снеллиус еще 300 лет назад показал, как изменяется направление волн при переходе через границу двух сред с разными значениями c1 и c2 скорости распространения: sinq1/sinq2 = c1/c2 (Приложение 3а. в нижней среде скорость меньше); это известный со школьных времен закон преломления волн, или закон Снеллиуса. Нетрудно обобщить его и на случай среды, где скорость звука изменяется плавно (Приложение 3б): в такой среде волна также поворачивает плавно. И при скачкообразном и при плавном изменении скорости волны всегда "стремятся" повернуть в том направлении, в котором уменьшается скорость их распространения.

 

2.2 Скорость звука

Скорость звука в океане в среднем близка к 1500 м/с, и ее величина определяется совокупным действием температуры воды, ее солености и статического давления, т.е. веса вышележащих слоев воды. Чем больше температура, этот вес и соленость, тем быстрее бегут звуковые волны. Все три параметра, а, следовательно, и скорость звука, изменяются с глубиной значительно быстрее, чем в горизонтальном направлении; это позволяет приближенно описывать океан как горизонтально-слоистую среду, где скорость звука существенно зависит от глубины, но на каждом горизонте остается неизменной в пределах больших акваторий. Каждый район океана может быть характеризован зависимостью скорости звука от глубины z, или, как принято говорить, профилем скорости звука с(z). Начнем с температуры. Почти повсеместно, кроме полярных морей, покрытых льдом, глубинные воды заметно холоднее поверхностных. У поверхности термометры показывают в тропиках круглый год 22-26°С; летом в умеренных широтах 15-18°С, в полярных морях 8-10°С; зимой температура у поверхности везде, кроме тропиков, опускается на 8-10°С. А вот в глубинах океана температура всегда почти неизменна, практически не зависит от широты и близка к 1-2°С.

Переход от теплых приповерхностных вод к холодным глубинным происходит отнюдь не равномерно по глубине (Приложение 4). Вблизи поверхности лежит слой, перемешиваемый волнением (перемешанный слой), его толщина меньше 100 м, а температура в нем почти одинакова. Глубже быстро, почти скачком, температура падает на 5-10°С. Еще глубже, температурные градиенты уменьшаются, и хотя по мере дальнейшего погружения температура воды продолжает еще падать, но падает медленно. На некоторой глубине температурные градиенты исчезают, и далее до самого дна температура воды остается практически постоянной.

Таким образом, по мере погружения в глубины океана на величину скорости звука действуют два противоборствующих фактора: понижение температуры ведет к уменьшению скорости звука, а увеличение статического давления - к ее росту. Фактически дело обстоит так, что в верхней части океана доминирует температурный эффект и скорость звука падает; на некоторой глубине температурный градиент становится столь малым, что доминирующая роль переходит к статическому давлению и скорость звука начинает вновь возрастать и растет уже до самого дна. Глубина, на которой скорость звука минимальна, существенно зависит от широты и времени года: в тропиках она составляет 1-1,5 км, а в полярных морях даже летом не превышает 100-150 м.

Акустические волны низких частот, слабо затухающие в морской воде, могут распространяться в подводном канале на многие тысячи километров. Это явление, названное сверхдальним распространением звука, было открыто в Советском Союзе в 1946 г. Л.М. Бреховских и Л.Д. Розенбергом. Впоследствии оказалось, что в США этот эффект был обнаружен несколько ранее, но работы в обеих странах были засекречены. В последующие десятилетия это направление акустики океана успешно развивалось советскими и зарубежными учеными.

Не менее интересно происходит распространение звука и в тех случаях, когда источник звуковых волн смещен от оси канала и находится, как, например, в Приложении 5, выше оси. Это область, где скорость звука падает с увеличением глубины и все звуковые волны, выйдя из источника, поворачивают в глубины океана. Уже через несколько километров в поверхностных слоях образуется так называемая зона тени, куда не проникают звуковые лучи. Однако, когда звуковые волны пересекают ось канала, они попадают в область, где скорость звука растет с глубиной.

Зоны выхода звуковых волн к поверхности называются зонами конвергенции, а участки между ними - зонами звуковой тени. По мере удаления от источника зоны конвергенции расширяются, расплываются, а зоны тени становятся уже и менее глубокими. На расстояниях 500-800 км зональная структура обычно исчезает, размазывается, и звуковые волны снова заполняют практически всю толщу океана, как и в случае источника на оси канала.

Вообще говоря, название "зона тени" условно. Действительно, звуковые лучи, распространяющиеся в канале, в зону тени не попадают. Однако в эти области звук может прийти после отражения от дна, а также (хотя и в меньшей степени) за счет дифракции звуковых волн на случайных неоднородностях среды. Он будет ослаблен, но все, же заметен (особенно в первых зонах тени) и воспринят приемником.

Изложенная трактовка лучевого распространения звуковых волн базируется на представлении, что на длине волны звукоизменения параметров среды, в частности скорости с, малы. Во многих случаях такое упрощение оказывается вполне допустимым. Однако длины волн низкочастотного звука (десятки и единицы Гц) велики по отношению даже к основным деталям профиля с(z).

Все описанные картины существенно идеализированы, в них не отражена изменчивость во времени и пространстве океанической среды. Эта изменчивость вызывается многими факторами. Мы уже упоминали, что температура поверхностных слоев воды зависит от географической широты и времени года. Кроме того, в океанах изменяются погодные условия, есть теплые и холодные течения, приливы и отливы, морское волнение и другие виды движения водных масс. Дно океана не гладкое и ровное, оно имеет сложнейший рельеф с хребтами, равнинами и глубокими каньонами; его поверхность испещрена мелкими неровностями и шероховатостями. К этому следует добавить, что в большом числе практически важных случаев акустические излучатели или приемники (или и те и другие) находятся на плавающих морских судах, подверженных качке, ветровому сносу и т.д.

Изменчивость среды в пространстве и времени имеет очень широкие масштабы - от 1 см до тысяч километров и от долей секунды до многих суток. Описать ее воздействие на звуковые подводные поля чрезвычайно трудно. Крупномасштабные пространственные изменения чаще рассматривают как постепенное изменение условий распространения звука вдоль трассы. Временные крупномасштабные, т.е. медленные изменения условий в океане приводят к медленным вариациям параметров звукового поля вдали от источника. Мелкомасштабные изменения, как правило, можно описывать как случайные стационарные процессы и в этих рамках искать их воздействие на акустические волны. Это широкий круг явлений в акустике океана, которые связаны с дифракцией, рассеянием звуковых волн на случайных неоднородностях толщи воды и на неровностях дна и поверхности. Прежде чем говорить о воздействии неоднородности и изменчивости среды на акустические поля, остановимся несколько подробнее на этих особенностях среды.

 



Информация о работе «Акустика океана»
Раздел: Физика
Количество знаков с пробелами: 38230
Количество таблиц: 0
Количество изображений: 16

Похожие работы

Скачать
14421
0
0

... поверхности дна строго под судном. Эхолот измеряет глубину воды под корпусом судна путём хронометрирования эха коротких звуковых импульсов, отражающихся от дна океана. Первоначально основными задачами гидроакустики были обнаружение подводных лодок, определение дальности распространения звука и т.д. В настоящее время гидроакустика является областью прикладных и научных исследований. ...

Скачать
11763
0
0

... , Японии. Для института строятся научно-исследовательские суда "Сергей Вавилов" и "Петр Лебедев", специально оснащенные для акустических работ в океане. Леонид Максимович возглавляет первые океанические экспедиции на этих судах. Деятельность Л.М. Бреховских получила признание в отечественных и международных научных кругах. В 1963-1969 годах он - член Международной акустической комиссии, в 1964- ...

Скачать
26891
0
1

... напичканные современным высокотехнологичным оборудованием, которые помогут ученым разобраться в океанском многоголосии. Именно военные специалисты подтолкнули гражданских технарей к созданию проекта глобального акустического мониторинга Мирового океана. Стратегическую систему звукового контроля, состоявшую из цепочки подводных гидрофонов, впоследствии перенацелили для решения мирных задач. Этот ...

Скачать
160950
5
13

... электронного обмена данными, — и эти инвестиции должны рассматриваться в контексте общей маркетинговой стратегии. ГЛАВА 2. функционирование Центра закупки компьютерной техники   2.1  Общая характеристика центра закупки компьютерной техники (на примере ООО "Аверс")   Торговое оптовое розничное предприятие ООО "Аверс" - одно из крупнейших предприятий на территории Республики Хакасия, ...

0 комментариев


Наверх