2 РАСЧЕТ ТЕПЛООБМЕННЫХ АППАРАТОВ

2.1 Расчет кожухотрубчатого теплообменника

 

Рассчитать и подобрать нормализованный кожухотрубчатый теплообменник для теплообмена между двумя водно-органическими растворами. Горячий раствор в количестве G1=6,0 кг/с охлаждается от t= 112,5 °С до t = 40°C. Начальная температура холодного раствора (G2 = 21,8 кг/с) равна t=20 "С. Оба раствора — коррозионно-активные жидкости с физико-химическими свойствами, близкими к свойствам воды. Горячая жидкость при средней температуре t1=76,3°С имеет следующие физико-химические характеристики: p1=986 кг/м3; λ1=0.662 Вт/(м*К); µ1 = = 0.00054 Па*с;

с1 =4190 Дж/(кг*К).

Расчет теплообменника проводят последовательно в соответствии с общей блок-схемой (см. рис. 2.2).

- Определение тепловой нагрузки:

Q = 6,0 • 4190 (112,5 — 40) = 1 822 650 Вт.

- Определение конечной температуры холодного раствора из уравнения теплового баланса:

t = t + Q/(G2C2) =20+1 822 650/(21,8 ∙ 4180) =40,0 °С

где 4180 Дж/(кг∙К) — теплоемкость с2 холодного раствора при его средней температуре t2 = 30°С. Остальные физико-химические свойства холодной жидкости при этой температуре: р2=996 кг/м3; λ2=0,618 Вт/(м-К); µ2= 0,000804 Па-с.

- Определение среднелогарифмнческой разности температур:

∆tсрлог= [(112,5 — 40) — (40 —20)]/ln (72,5/20) =40,8 град.

- Ориентировочный выбор теплообменника. Решение вопроса о том, какой теплоноситель направить в трубное пространство, обусловлено его температурой, давлением, коррозионной активностью, способностью загрязнять поверхности теплообмена, расходом и др. В рассматриваемом примере в трубное пространство с меньшим проходным сечением (см. параметры многоходовых теплообменников в табл. 1.3) целесообразно направить теплоноситель с меньшим расходом, т. е. горячий раствор. Это позволит выровнять скорости движения теплоносителей и соответствующие коэффициенты теплоотдачи, увеличивая таким образом коэффициент теплопередачи. Кроме того, направляя поток холодной жидкости в межтрубное пространство, можно отказаться от теплоизоляции кожуха теплообменника.

Примем ориентировочное значение Re1oр=15 000, что соответствует развитому турбулентному режиму течения в трубах. Очевидно, такой режим возможен в теплообменнике, у которого число труб, приходящееся на один ход, равно:

для труб диаметром dH = 20x2 мм

для труб диаметром dH = 25X2 мм

 

Поскольку в данном примере свойства теплоносителей мало отличаются от свойств воды, примем минимальное ориентировочное значение коэффициента теплопередачи, соответствующее турбулентному течению (см. табл. 1.1): Кор=800 Вт/(м2∙К). При этом ориентировочное значение поверхности теплообмена составит

Fop= 1 822 650/(40,8∙800) =55,8 м2.

Как видно из табл. 2.3, теплообменники с близкой поверхностью имеют диаметр кожуха 600—800 мм. При этом только многоходовые аппараты с числом ходов z=4 или 6 имеют соотношения n/z, близкие к 50.

В многоходовых теплообменниках средняя движущая сила несколько меньше, чем в одноходовых, вследствие возникновения смешанного взаимного направления движения теплоносителей. Поправку для среднелогарифмической разности температур определим по уравнению (1.7):

;

=0,813

∆tср = 40,8 ∙0,813 = 33,2 град.

С учетом поправки ориентировочная поверхность составит:

Fop = 1 822 650/ (33,20 • 800) =68,7 м2.

Теперь целесообразно провести уточненный расчет следующих вариантов (см. табл. 2.3):

1К: D=600 мм; dH = 25X2 мм; z=4; n/z=206/4=51,5;

2К: D = 600 мм; dH = 20X2 мм; z=6; n/z = 316/6 = 52,7;

ЗК: D=800 мм; dH = 25X2 мм; z=6; n/z = 384/6=64,0.

5. Уточненный расчет поверхности теплопередачи.

 Вариант 1К:

Pr =

 

В соответствии с формулой (2.12) коэффициент теплоотдачи к жидкости, движущейся по трубам турбулентно, равен:

α1= Вт/(м2∙К).

Поправкой (Рг/Ргст)025 здесь можно пренебречь, так как разность температур t, и tст1 невелика (менее ∆tср = 33,2 град).

Площадь сечения потока в межтрубном пространстве между перегородками (см. табл. 2.3):

Sмтр = 0,045 м2; тогда

Re2 = 21.8∙0,025/(0,045∙0,000804)=I5 064;

Рг2 = 418О∙0,000804/0,618 = 5,44.

В соответствии с формулой (2.16) коэффициент теплоотдачи к жидкости, движущейся в межтрубном пространстве, составит:

α2 = (0,618/0,025)∙0,24∙(15064)0,6-(5,44)0,36 = 3505 Вт/(м2∙К).

Оба теплоносителя'— мало концентрированные водные растворы; поэтому в соответствии с табл. 2.2 примем термические сопротивления загрязнений одинаковыми, равными rз1=rз2 = 1/2900 м2∙К/Вт. Повышенная коррозионная активность этих жидкостей диктует выбор нержавеющей стали в качестве материала труб. Теплопроводность нержавеющей стали примем равной λст=17,5 Вт/(м∙К). Сумма термических сопротивлений стенки и загрязнений равна

∑δ/λ=0,002/17,5 + 1/2900+ 1/2900 = 0,000804 м2∙К/Вт.

Коэффициент теплопередачи равен

К= 1/(1/2330+1/3505 + 0,000804) =659 Вт/(м2∙К).

Требуемая поверхность составит

F = I 822 650/(33,2∙659) =83,4 м2.

Из табл. 2.3 следует, что из выбранного ряда подходит теплообменник с трубами длиной 6,0 м и номинальной поверхностью /г1^ = 97 м2. При этом запас

∆= (97-83.4) ∙100/83,4= 16,4%.

Масса теплообменника (см. табл. 2.8) M = 3130 кг.

Вариант 2К. Аналогичный расчет дает следующие результаты: Re1 = 16 770, α1= 3720 Вт/(м2∙К), Re2=11308, α2 = 3687 Вт/(м2∙К), К = 744 Вт/(м2∙К). F =

=74,1 м2. Из табл. 2.3 следует, что теплообменник длиной 4,0 м имеет недостаточный запас поверхности (∆<1О%), поэтому для данной задачи он непригоден. Теплообменник длиной 6,0 м, поверхностью 119 м2, не имеет преимуществ по сравнению с вариантом IK, так как при большей массе (M2K = 3380 кг) он заведомо будет иметь большее гидравлическое сопротивление.

Вариант ЗК. Результаты расчета: Re1 = 10 540, α1 = 1985 Вт/(м2-К),

Re2 = 9694, α2 = 2707 Bt/(m2∙K), K = 596 Вт/(м2∙К), F=92,4 м2. Из табл. 2.3 следует, что теплообменник с трубами длиной 4,0 м, номинальной поверхностью F3K=121 м2 подходит с запасом ∆ = 30,9 %. Его масса

M3K = 3950 кг больше, чем в варианте 1K, однако в полтора раза меньшая длина /с* труб выгодно отличает его от варианта 1К. Помимо большей компактности такой теплообменник должен иметь меньшее гидравлическое сопротивление в межтрубном пространстве. Стремясь получить еще меньшую длину труб, целесообразно рассмотреть дополнительный вариант — 4К

Варнант 4К. D=800 мм, dH = 20X2 mm, z = 6, n/z = 618/6= 103.

Результаты расчета: Re1 =8560, α1 =2030 Вт/(м2∙К), Re2 = 7754,

α2 = 2941 Вт/(м2∙К)

К=611 Вт/(м2∙К), F=90,3 м2.

Из табл. I Приложения видно, что теплообменник с трубами длиной 3,0 м, номинальной поверхностью F4K= 116 м2 подходит с запасом ∆ = 28,5 %. Его масса M4K = 3550 кг, что на 400 кг меньше, чем в варианте ЗК.

Дальнейшее сопоставление трех конкурентоспособных вариантов (IK, ЗК и 4К) проводят по гидравлическому сопротивлению.


Информация о работе «Расчет тарельчатой ректификационной колонны»
Раздел: Промышленность, производство
Количество знаков с пробелами: 38067
Количество таблиц: 7
Количество изображений: 10

Похожие работы

Скачать
75524
5
25

... применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки). Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. 2. Теоретические основы расчета тарельчатых ректификационных колонн Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический ( ...

Скачать
8948
0
6

... колонну пара при средней температуре в колонне tCP = (63+80.5) /2 = 720С: Диаметр колонны:  DCT = 2200мм. Тогда скорость пара в колонне будет: Гидравлический расчет тарелок. Принимаем следующие размеры ситчатой тарелки: диаметр отверстий d0 = 4 мм, высота сливной перегородки hП = 40мм. свободное сечение тарелки (суммарная площадь отверстий) 8% от площади тарелки. Площадь, занимаемая ...

Скачать
38791
2
8

... и кубового остатка соответственно, кмоль/кмоль смеси; ,  - молекулярные массы соответственно этилацетата и толуола, кг/кмоль.  (1.5)  (1.6) кг/кг смеси  кг/кг смеси  кг/кг смеси Находим производительность по кубовому остатку:  кг/с Находим производительность колоны по дистилляту:  кг/с Нагрузки ректификационной колоны по пару и жидкости определяется рабочим флегмовым числом ...

Скачать
25546
6
20

... ректификационная колонна 5-куб-испаритель 6-дефлегматор 7-теплообменник 8-промежуточная ёмкость 9-насос 10- теплообменник 11-ёмкость. ЗАДАНИЕ №1 «Расчет ректификационной колонны непрерывного действия» Провести расчет ректификационной колонны непрерывного действия для разделения смеси бензол-толуол с определением основных геометрических размеров колонного аппарата, производительность ...

0 комментариев


Наверх