Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка

18609
знаков
1
таблица
19
изображений

Министерство образования Республики Беларусь

Белорусский Государственный Университет

Экономический факультет

Кафедра Экономической и институциональной экономики

Курсовой проект

По дисциплине «Эконометрика и прогнозирование»

На тему

«Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка»

Выполнила

Студентка третьего курса

Отделения «Экономическая теория»

Волкова Ольга Александровна

Научный руководитель:

Абакумова Юлия Георгиевна

Минск, 2008 г.


Содержание

Введение

Теоретический раздел

Аналитический раздел

Построение базовой регрессионной модели и оценка её качества

Исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка

Устранение гетероскедастичности в модели

Заключение

Список использованных источников


Введение

Вся история развития человечества неразрывно связана с изменениями динамики численности и воспроизводства населения. Современные очень высокие темпы роста численности населения мира в решающей степени определяются темпами его увеличения в развивающихся странах.

Современный «взрыв» населения в развивающихся странах имеет существенные особенности. Главная особенность заключается в том, что если в Европе быстрый рост населения был обусловлен в первую очередь социально-экономическими изменениями, т.е. следовал за экономическим ростом и изменениями в социальной сфере, то в развивающихся странах мы наблюдаем прямо противоположную картину: быстрый рост населения значительно опережает их экономическое и социальное развитие, усугубляя тем самым и без того ложные проблемы занятости, социальной сферы, обеспечения продовольствием, экологии.

Наряду с наблюдаемым во второй половине XX века демографическим взрывом проявился и демографический кризис, затронувший в первую очередь развитые страны мира.

Суть современного демографического кризиса заключается не только в резком ухудшении развития народонаселения, что выражается в резком уменьшении темпов роста численности населения в развитых странах, а в некоторых из них и снижении этого показателя за нулевую отметку, но и в определенном кризисе института семьи, в некотором ухудшении качества развития населения, в демографическом старении.

Наблюдаемая в развитых странах мира тенденция к резкому падению рождаемости значительно ниже уровня, обеспечивающего простое воспроизводств населения, ведет к значительному демографическому старению, сокращению трудовых ресурсов и увеличению «экономической нагрузки» на экономически активное население, на старение населения или увеличение доли пожилых и старых людей.

Итак, изменение показателя общей численности населения происходит под воздействием целого ряда прямых и косвенных факторов. В своей работе я бы хотела рассмотреть влияние показателей рождаемости, смертности и численности пожилого населения в разных странах мира на общую численность населения этих стран.

Такой выбор обусловлен, в первую очередь, целью моей работы – проверка регрессионной модели на гетероскедастичность (т.к. эта проблема в большей степени присуща пространственным данным и редко встречается во временных рядах).

Таким образом построенная мною модедь содержит следующие объясняющие переменные:

X1 – численность рожденных детей за 2007г. (чел.),

X2 – численность умерших за 2007г. (чел),

Х3 – численность населения в возрасте от 65 лет и старше (чел.), и объясняемую переменную:

Y – общая численность населения на начало 2008г. (чел.).

Статистические данные по странам взяты за период 2007г, влияющие на общую численность населения начала 2008г. (Таблица 1)

Страны Общая численность населения на начало года X1- численность рожненных детей за 2007г. X2 - смертность за 2007г. X3 - численность населения старше 65 лет за 2007г.
Бельгия 10666866 120663 374.0553 1824034.086
Болгария 7640238 75349 693.2108 1321761.174
Чехия 10381130 114632 355.3592 1484501.59
Дания 5475791 64082 256.328 837796.023
Германия 82221808 682700 2594.26 16279917.98
Эстония 1340935 15775 78.875 229299.885
Ирландия 4419859 70623 261.3051 490604.349
Греция 11214992 110048 418.1824 2085988.512
Испания 45283259 488335 1806.8395 7562304.253
Франция 63753140 816500 3102.7 10328008.68
Италия 59618114 563236 2140.2968 11864004.69
Кипр 794580 8529 52.8798 97733.34
Латвия 2270894 23273 202.4751 388322.874
Литва 3366357 32346 190.8414 525151.692
Люксембург 483799 5477 9.8586 67731.86
Венгрия 10045000 97600 575.84 1597155
Мальта 410584 3871 25.1615 56660.592
Нидерланды 16404282 180882 741.6162 2378620.89
Австрия 8331930 76250 282.125 1408096.17
Польша 38115641 387873 2327.238 5107495.894
Португалия 10617575 102492 348.4728 1836840.475
Румыния 21528627 214728 2576.736 3207765.423
Словения 2025866 19636 60.8716 322112.694
Словакия 5400998 54424 331.9864 642718.762
Финляндия 5300484 58729 158.5683 874579.86
Швеция 9182927 103421 258.5525 1597829.298
Великобритания 61185981 770651 3467.9295 9789756.96
Турция 70586256 1361000 29533.7 4658692.896
Исландия 314321 4508 6.3112 36775.557
Норвегия 4737171 58459 181.2229 691626.966
Швейцария 7591414 74440 290.316 1229809.068

Табл. 1


Теоретический раздел

При практическом проведении регрессионного анализ модели с помощью МНК необходимо обращать внимание на проблемы, связанные с выполнимостью свойств случайных отклонений модели, т.к. свойства оценок коэффициентов регрессии напрямую зависят от свойств случайного члена в уравнении регрессии. Для получения качественных оценок необходимо следить за выполнимостью предпосылок МНК (условий Гаусса-Маркова), т.к. при их нарушении МНК может давать оценки с плохими статистическими свойствами.

Одной из ключевых предпосылок МНК является условие постоянства дисперсий случайных отклонений: т.е. D( εi ) = D( εj ) = σ2 для любых наблюдений i и j. Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсий отклонений).

Наличие гетероскедастичности может привести к снижению эффективности оценок, полученных по МНК, к смещению дисперсий, к ненадежности интервальных оценок, получаемых на основе соответствующих t- и F-статистик. Таким образом, статистические выводы, получаемые при стандартных проверках качества оценок, могут быть ошибочными и приводить к неверным заключения по построенной модели. Вполне вероятно, что стандартные ошибки коэффициентов будут занижены, а следовательно можно признать статистически значимыми коэффициенты, которые таковыми не являются. Причиной гетероскедастичности могут быть выбросы (резко выделяющиеся наблюдения), ошибки спецификации модели, ошибки в преобразовании данных, ассиметрия распределения какой-либо из объясняющих переменных. Чаще всего, появление проблемы гетероскедастичности можно предвидеть и попытаться устранить этот недостаток еще на этапе спецификации. Однако обычно приходиться решать эту проблему уже после построения уравнения регрессии. Не существует какого-либо однозначного метода определения гетероскедастичности. Существует довольно большое количество тестов и критериев, наиболее популярными и наглядными из которых являются: графический анализ отклонений, тест ранговой корреляции Спирмена, тест Парка, тест Глейзера, тест Голдфельда-Квандта и тест Уайта. Моя работа посвящена исследованию поледних двух тестов.

Тест Уайта

Алгоритм этого теста заключается в том, что сперва оценивается исходная модель и определяются остатки εi , затем строится вспомогательно уравнение регрессии и определяется его коэффициент детерминации, произведение n*R^2 сравнивается со значением χ^2- распределения и делается вывод о наличии или об отсутствии гетероскедастичности.

Тест Парка

Парк в свою очередь предложил следующую функциональную зависимость:

Алгоритм теста:

1) Оцениваем исходное уравнение и определяем ei.

2) Оцениваем уравнение

Проверяем статистическую значимость коэффициента β уравнения на основе статистики


Если β значим, то гетероскедастичность. Если нет, то гомоскедастичность.

Тест Бреуша-Пагана-Годфри

1)  Оценивается исходная модель и определяются остатки

Строится оценка:

2)  Оценивается регрессия

 

Если

При установлении присутствия гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Сначала можно попробовать устранить возможную причину гетероскедастичности, скорректировав исходные данные, затем попробовать изменить спецификацию модели, а в случае, если не помогут эти меры, использовать метод взвешенных наименьших квадратов.

Далее в работе проведем довольно полный анализ базовой модели, включая непосредственно тесты на обнаружение гетероскедастичности.


Аналитический раздел


Информация о работе «Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 18609
Количество таблиц: 1
Количество изображений: 19

0 комментариев


Наверх