3. По результатам опытов вычисляем величины, входящие в табл. 3.
Табл. 3. Расчетные данные
№ | P1 | S1 | QC1 | cos φ1 | S2 | QL2 | cos φ2 | xL2 | P | S | cos φ | L |
Вт | ВА | ВАр | о.е. | ВА | ВАр | о.е. | Ом | Вт | ВА | о.е. | Гн | |
1 | 231 | 451,5 | 387,93 | 0,5116 | 215 | 214,48 | 0,070 | 214,48 | 246 | 290,25 | 0,848 | 0,683 |
2 | 231 | 451,5 | 387,93 | 0,5116 | 301 | 300,33 | 0,066 | 153,23 | 251 | 268,75 | 0,934 | 0,488 |
3 | 231 | 451,5 | 387,93 | 0,5116 | 344 | 342,69 | 0,087 | 133,86 | 261 | 262,30 | 0,995 | 0,426 |
4 | 231 | 451,5 | 387,93 | 0,5116 | 387 | 384,93 | 0,103 | 118,80 | 271 | 275,20 | 0,985 | 0,378 |
5 | 231 | 451,5 | 387,93 | 0,5116 | 430 | 427,64 | 0,105 | 106,91 | 276 | 279,50 | 0,987 | 0,340 |
6 | 231 | 451,5 | 387,93 | 0,5116 | 516 | 512,50 | 0,116 | 88,98 | 291 | 305,30 | 0,953 | 0,283 |
7 | 231 | 451,5 | 387,93 | 0,5116 | 602 | 596,66 | 0,133 | 76,10 | 311 | 382,70 | 0,813 | 0,242 |
8 | 231 | 451,5 | 387,93 | 0,5116 | 688 | 680,69 | 0,145 | 66,47 | 331 | 451,50 | 0,733 | 0,212 |
9 | 231 | 451,5 | 387,93 | 0,5116 | 774 | 763,84 | 0,161 | 58,94 | 356 | 537,50 | 0,662 | 0,188 |
10 | 231 | 451,5 | 387,93 | 0,5116 | 860 | 846,82 | 0,174 | 52,93 | 381 | 623,50 | 0,611 | 0,168 |
11 | 231 | 451,5 | 387,93 | 0,5116 | 946 | 928,72 | 0,190 | 47,97 | 411 | 720,25 | 0,571 | 0,153 |
12 | 231 | 451,5 | 387,93 | 0,5116 | 1075 | 1049,00 | 0,219 | 41,96 | 466 | 838,50 | 0,556 | 0,134 |
Вычислим эти величины для первого опыта:
Для остальных случаев вычисления аналогичны
4. Используя данные табл. 2 и табл. 3 рассчитаем активные и реактивные составляющие то-ков всех ветвей:
Для первого опыта:
Для остальных случаев вычисления аналогичны
Данные расчета занесены в табл. 4. В этой же таблице представлены численные значения индуктивности из табл. 3.
Табл. 4. Расчетные данные.
№ | L | I1a | I1p | I2a | I2p | Ia | Ip |
Гн | А | ||||||
1 | 0,683 | 1,074 | 1,804 | 0,070 | 0,998 | 1,144 | -0,807 |
2 | 0,488 | 1,074 | 1,804 | 0,093 | 1,397 | 1,167 | -0,407 |
3 | 0,426 | 1,074 | 1,804 | 0,140 | 1,594 | 1,214 | -0,210 |
4 | 0,378 | 1,074 | 1,804 | 0,186 | 1,790 | 1,260 | -0,014 |
5 | 0,340 | 1,074 | 1,804 | 0,209 | 1,989 | 1,284 | 0,185 |
6 | 0,283 | 1,074 | 1,804 | 0,279 | 2,384 | 1,353 | 0,579 |
7 | 0,242 | 1,074 | 1,804 | 0,372 | 2,775 | 1,447 | 0,971 |
8 | 0,212 | 1,074 | 1,804 | 0,465 | 3,166 | 1,540 | 1,362 |
9 | 0,188 | 1,074 | 1,804 | 0,581 | 3,553 | 1,656 | 1,748 |
10 | 0,168 | 1,074 | 1,804 | 0,698 | 3,939 | 1,772 | 2,134 |
11 | 0,153 | 1,074 | 1,804 | 0,837 | 4,320 | 1,912 | 2,515 |
12 | 0,134 | 1,074 | 1,804 | 1,093 | 4,879 | 2,167 | 3,075 |
По вычисленным значениям строим графики зависимостей сил тока в цепи I и ветвях I1 и I2, косинуса угла сдвига фаз cos φ от индуктивности катушки L.
Строим векторные диаграммы токов и напряжения:
а). I1p < I2p. Берем 9ий результат измерений: I1a = 1.074 А, I1p = 1.804 А, I2a = 0.581 А, I2p = 3.553 А, Ia = 1.656 А, Ip = 1.748 А.
б). I1p = I2p. Берем 4ий результат измерений: I1a = 1.074 А, I1p = 1.804 А, I2a = 0.186 А, I2p = 1.790 А, Ia = 1.26 А, Ip = -0.014 А.
в). I1p > I2p. Берем 1ий результат измерений: I1a = 1.074 А, I1p = 1.804 А, I2a = 0.070 А, I2p = 0.998 А, Ia = 1.144 А, Ip = -0.807 А.
Вывод: при увеличении индуктивности катушки с 130 до 425 мГн сила тока в цепи I и во второй ветви(с катушкой) I2 стремительно падают, при этом косинус угла сдвига возрастает. Реактивное сопротивление катушки меньше сопротивления конденсатора, поэтому через катушку протекает больший ток, чем через конденсатор. В этом случае цепь принимает индуктивный характер и сила тока отстает от напряжения(векторная диаграмма а).
При индуктивности катушки около 425 мГн сила тока в цепи принимает наименьшее значение I = 1.22 А, а косинус угла сдвига фаз равен 1. Реактивное сопротивление катушки и конденсатора равны, поэтому и реактивные составляющие токов в ветвях равны, сила тока в цепи синфазна напряжению(диаграмма б).
При дальнейшем увеличении индуктивности катушки с 425 до 685 мГн сила тока в цепи I начинает плавно увеличиваться, а сила тока во второй ветви I2 медленно уменьшаться, величина косинуса угла сдвига фаз падает. Реактивное сопротивление катушки становится больше сопротивления конденсатора, поэтому через катушку протекает меньший ток, чем через конденсатор. В этом случае цепь принимает емкостной характер и сила тока опережает напряжение(диаграмма в).
Изменение индуктивности катушки никак не влияет на силу тока в первой ветви I1 = const.
... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...
... 4 Содержание отчета Схема включения однофазного счетчика в сеть. Схема включения трехфазного счетчика (п.7). Таблица с результатами измеренных и вычисленных значений. 3. Выводы о результатах поверки счетчика. Контрольные вопросы. 1. Единицы измерения электрической энергии. 2. Основные части счетчика и их назначение. 3. Принцип работы индукционного ...
... для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9). Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического ...
... контактов обеспечивается выбором их материала и конструкции при использовании одноступенчатой системы. В заключение отметим, что в настоящее время начинают широко применяться электрические аппараты с герметизированными контактами и контактами, работающими в глубоком вакууме. Жидкометаллические контакты? Наиболее характерные недостатки твердометаллических контактов следующие: 1. С ростом ...
0 комментариев