1. Слабая динамика изменения коэффициентов функции выбора
2. Близкое к нулю количество противоречивых гипотез
Начальный вид функции выбора представлен в таблице 7.
Таблица 7. Начальный вид функции выбора
Параметр | 1 | 2 | 3 | 4 | |
1 | Поддержка расширенных вычислений | 0 | 0 | ||
2 | Производительность, MIPS | 0 | 0 | 0 | -3 |
3 | Объем памяти программ (ROM) | -9 | 0 | 9 | 0 |
4 | Объем памяти данных (RAM) | -6 | 0 | 9 | -3 |
5 | Оптимизированный набор инструкций | -3 | 3 | ||
6 | Поддержка JTAG | -6 | 6 | ||
7 | Разрядность АЦП | -3 | 0 | 3 | 0 |
8 | Встроенное FFT ускорение | -9 | 9 |
Протокол обучения решателя представлен в таблице 8.
Таблица 8. Протокол обучения решателя
Уровень знаний | Общее число фактов | Число гипотез | Число подтвержденных гипотез | Число опровергнутых гипотез | ||||
+ | - | |||||||
1 | 6 | 9 | 46 | 8 | 47 | |||
2 | 61 | 31 | 31 | 31 | 31 | |||
3 | 123 | 61 | 31 | 50 | 42 | |||
4 | 215 | 31 | 31 | 42 | 20 | |||
5 | 277 | 31 | 61 | 44 | 48 | |||
6 | 369 | 32 | 60 | 63 | 29 | |||
7 | 461 | 61 | 91 | 97 | 55 | |||
8 | 613 | 32 | 86 | 82 | 36 | |||
9 | 731 | 31 | 31 | 39 | 23 | |||
10 | 793 | 61 | 31 | 54 | 38 | |||
11 | 885 | 31 | 31 | 40 | 22 | |||
12 | 947 | 31 | 53 | 51 | 33 | |||
13 | 1031 | 84 | 31 | 82 | 33 | |||
14 | 1146 | 61 | 31 | 67 | 25 | |||
15 | 1238 | 31 | 16 | 24 | 23 | |||
16 | 1285 | 31 | 20 | 28 | 23 | |||
17 | 1336 | 31 | 13 | 33 | 11 | |||
18 | 1380 | 26 | 7 | 22 | 11 | |||
19 | 1413 | 24 | 15 | 27 | 12 | |||
Уровень знаний | Общее число фактов | Число гипотез | Число подтвержденных гипотез | Число опровергнутых гипотез | ||||
+ | - | |||||||
20 | 1452 | 27 | 12 | 31 | 8 | |||
21 | 1491 | 17 | 9 | 22 | 4 | |||
22 | 1517 | 10 | 8 | 13 | 5 | |||
23 | 1535 | 11 | 11 | 15 | 7 | |||
24 | 1557 | 12 | 4 | 11 | 5 | |||
25 | 1573 | 18 | 1 | 14 | 5 | |||
26 | 1592 | 7 | 3 | 8 | 2 | |||
27 | 1602 | 9 | 4 | 10 | 3 | |||
28 | 1615 | 8 | 4 | 10 | 2 | |||
29 | 1627 | |||||||
К 29-ой итерации количество генерируемых гипотез упало и выровнялось, а количество опровергнутых гипотез среди них стало минимальным. Таким образом, можно отметить факт окончания обучения решателя. Конечный вид функции выбора представлен в таблице 9. График зависимости числа генерируемых гипотез и числа противоречий от уровня знаний Решателя представлен на рисунке 2.
Таблица 9. Конечный вид функции выбора
Параметр | 1 | 2 | 3 | 4 | |
1 | Поддержка расширенных вычислений | -10653 | 581 | ||
2 | Производительность, MIPS | -112640 | 29200 | 42690 | 30421 |
3 | Объем памяти программ (ROM) | -85037 | 21601 | 34143 | 21601 |
4 | Объем памяти данных (RAM) | -73648 | 16875 | 16875 | 16875 |
5 | Оптимизированный набор инструкций | -34779 | 34401 | ||
6 | Поддержка JTAG | -18946 | 18512 | ||
7 | Разрядность АЦП | -138105 | -68925 | 120625 | 86405 |
8 | Встроенное FFT ускорение | -28302 | 20390 |
Результат ранжирования параметров, с учетом полученных весовых коэффициентов Cij, по формуле
wi = |maxj(Сij) - minj(Cij)|
Таблица 10. Проранжированные параметры
Параметр | wi | Ранг | |
1 | Поддержка расширенных вычислений | 11234 | 8 |
2 | Производительность, MIPS | 155330 | 2 |
3 | Объем памяти программ (ROM) | 119180 | 3 |
4 | Объем памяти данных (RAM) | 90523 | 4 |
5 | Оптимизированный набор инструкций | 69180 | 5 |
6 | Поддержка JTAG | 37458 | 7 |
7 | Разрядность АЦП | 258730 | 1 |
8 | Встроенное FFT ускорение | 48692 | 6 |
Ранжирование показывает, что Решатель правильно определил важность параметров в их влиянии на ВПК. Так от разрядности АЦП будет зависеть достоверность распознавания, производительность системы оказывает прямое влияние на быстродействие и косвенно влияет на достоверность распознавания, ведь недостаток вычислительной мощности процессора не позволит реализовать более сложные программные алгоритмы, сохранив при этом приемлемое время отклика всего устройства. Объем памяти данных и объем памяти программ так же должны быть достаточными для реализации программного алгоритма, иначе придется использовать внешнюю память, что уменьшит быстродействие системы, но увеличит её ресурсоёмкость. Далее по списку расположены параметры, влияющие на удобство разработки системы. Эти параметры важны для разработчика, но не оказывают прямого влияния на ВПК.
Анализ нелинейных компонент
В результате обучения Решателя было получено 167 нелинейных компонент. В таблице 11 приведены 5 наиболее весомых из них.
Таблица 11. Нелинейные компоненты
Вес | Параметр | Значение | |
1 | -144705 | Встроенное FFT ускорение | Нет |
Объем памяти данных (RAM) | <4K | ||
Поддержка JTAG | Есть | ||
Поддержка расширенных вычислений | Нет | ||
Разрядность АЦП | 12 | ||
21 | -122996 | Оптимизированный набор инструкций | Нет |
Поддержка расширенных вычислений | Нет | ||
Производительность | 50-100 | ||
Разрядность АЦП | 12 | ||
Объем памяти данных (RAM) | <4K | ||
Объем памяти программ (ROM) | <8K | ||
114 | -143484 | Объем памяти данных (RAM) | <4K |
Объем памяти программ (ROM) | >32K | ||
Поддержка JTAG | Нет | ||
Поддержка расширенных вычислений | Нет | ||
Производительность | 50-100 | ||
Разрядность АЦП | 12 | ||
130 | -144705 | Объем памяти данных (RAM) | <4K |
Объем памяти программ (ROM) | >32K | ||
Поддержка JTAG | Нет | ||
Поддержка расширенных вычислений | Нет | ||
Производительность | >200 | ||
Разрядность АЦП | 12 | ||
122 | -124217 | Встроенное FFT ускорение | Есть |
Поддержка JTAG | Есть | ||
Поддержка расширенных вычислений | Нет | ||
Производительность | >200 | ||
Разрядность АЦП | 12 |
Все приведенные нелинейные компоненты, кроме компоненты №122, являются безусловно слабыми, так как имеют недостаточный объем внутренней памяти данных. Компонента №122 является слишком сильным решением, так подобная производительность будет излишней в условиях данной задачи.
Анализ полученных решенийИз рисунка 4 хорошо видно, что Решатель выдает реалистичные и, самое главное, сбалансированные решения, которые можно использовать для применения в заданной проблемной области. В подтверждение этого в таблице 12 приведены примеры DSP, рекомендованные производителями для применения в аудиоустройствах.
Таблица 13. Пример существующих решений
DSP | Вектор значений | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Analog Devices ADSP-2185N | Есть | 100-200 | 8K-16K | 4K-16K | Есть | Есть | 12 | Есть |
Texas Instrument 320UC5409-100 | Есть | 100-200 | 16К-32К | 4К-16К | Есть | Есть | 12 | Есть |
Анализ числовых характеристик
Коэффициент сокращения перебора:
где Nполн – полное число переборов; Nнач- число фактов в начальной базе; Nоцен – число оцененных фактов.
Коэффициент новизны:
где – объем начальной базы удачных фактов;
– количество значений параметров i-го типа;
– порядковые индексы, определяющие порядковые номера j-х значений i-го параметра в приоритетном ряду коэффициентов Cij, начиная с max Cij.
Полученный коэффициент новизны можно объяснить тем, что за удачные факты были приняты очень сбалансированные решения и полученные результаты являются реалистичными.
В ходе выполнения курсовой работы были проанализированы требования к разрабатываемому устройству и найдены пути выполнения этих требований. Для этого были изучены характеристики современных цифровых сигнальных процессоров, было проведено обучение решателя открытых задач решению задачи выбора оптимального цифрового сигнального процессора. Результаты оценки адекватны, реалистичны, и соответствуют существующим решениям.
Также был разработан подключаемый к решателю блок качественной оценки, основывающий свои выводы на характеристиках, удовлетворяющих составленной задаче.
1. Лекции по курсу «Поисковое проектирование вычислительных систем». И.И. Дзегеленок, 2010
2. Открытые задачи поискового проектирования. И.И. Дзегеленок под ред. Ю.В. Кандырина. - М:МЭИ, 1991 г. - 68 с.
3. Лабораторные работы по курсу «Поисковое проектирование вычислительных систем». И.И.Дзегеленок, Ю.В. Аляева, А.Ю. Кузнецов. - М: Издательство МЭИ, 2004 г. - 40 с.
4. Сайт компании Texas Instrument http://www.ti.com
5. Сайт компании Analog Devices http://www.analog.com
6. Сайт компании Microchip http://www.microchip.com
7. Цифровые сигнальные процессоры: Основы Выбора. А. Пантелейчук, 2007
8. О союзе физиков и лириков или О том, как появилась современная электрогитара. С. Арзуманов, 2009
9. Часто Задаваемые Вопросы по электронному созданию и обработке звука. Е. Музыченко, 1998
10. Материалы Berkeley Design Technology, Inc. http://www.bdti.com
... . Выберите необходимый режим записи и закройте это окно. Любое звуковое сообщение всегда можно экспортировать в WAVE-файл и обработать в любом звуковом редакторе, обладающем возможностями, которых нет у музыкального редактора Cakewalk. 4.2.4. Импорт WAVE-файлов Звуковое сообщение Cakewalk можно превратить любой монофонический WAVE-файл. Стереофонические файлы преобразуются в два звуковых ...
... , в будущем заменяющие флоппи дисководы. · Графический акселератор - устройство для ускорения обработки и вывода трехмерной графики. и многое другое... характеристика дополнительных устройств к ПК теперь рассмотрим каждое устройство более подробно Принтер. Для вывода результатов работы используют принтеры. В настоящее время используется четыре принципиальных схемы нанесения ...
... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...
... частота современных радиовещательных передатчиков поддерживается постоянной с высокой точностью, настройка приемника при помощи синтезатора частот оказывается стабильной. Наиболее распространены в бытовых радиоприемных устройствах цифровые синтезаторы частот с частотной автоподстройкой (ЧАП), работающие по методу косвенного синтеза (3). Структурная схема подобного устройства показана на Рисунок. ...
0 комментариев