2. МЕТОДЫ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ВЛАГОЗАЩИТЫ РЭС

2.1. Экспериментальные методы определения герметичности

Получить в производстве абсолютно герметичный блок не представляется возможным. Поэтому необходимо оценивать степень герметичности, которая характеризуется течью: большой (больше 10-3 дм3 Па/с), средней (10-3…10-4 дм3 Па/с), малой (менее 10-5…10-8 дм3 Па/с). Большие течи можно определить, помещая герметизированный блок в нагретый этиленгликоль или керосин на глубину не менее 2,5 см. Воздух при нагревании расширяется и выходит в виде пузырьков; чувствительность этого метода 2•10-3 дм3•Па/с. Можно подавать в испытываемый гермоузел воздух под давлением (10…12) •105 Па. По скорости образования пузырьков и их размерам можно ориентировочно определить место и течь. Средние течи можно определить с помощью индикаторной жидкости, в которую погружается предварительно опрессованный во фреоне (2…6) •105 Па гермоузел.

Малые течи определяются масс-спектрометрическим или радиационным методом. При масс-спектрометрическом методе течь определяется с помощью гелиевых течеискателей типа ПТИ-7, СТИ-11, имеющих чувствительность 2•10-12 дм3•Па/(с•мВ). Полимерные оболочки этим методом не проверяются, так как они под давлением могут сорбировать гелий, находящийся в атмосфере. Недостатком метода является низкая производительность, особенно в случае малых течей, что требует увеличения времени измерения. Радиационный метод (чувствительность 10-13 дм3 Па/с) состоит в предварительной опрессовке гермоблока в изотопе Kr85 и индикации степени истечения изотопа счетчиком Гейгера. Так как получить абсолютно герметичный шов практически невозможно, то после герметизации блок заполняется каким-либо осушенным инертным газом (азотом, аргоном, гелием) под избыточным давлением (0,03…0,06 Мпа). Выравнивание давления в гермокорпусе и наружной среде происходит в течение 8…10 лет, что препятствует натеканию влаги из внешней среды внутрь гермокорпуса (при наличии снаружи парцианального давления паров влаги, большего, чем внутри гермокорпуса, и при размере микропор, большем диаметра молекул влаги, влага может натекать из внешней среды внутрь гермокорпуса даже при наличии в нем избыточного давления осушенного инертного газа). Увеличение давления заполняющего гермокорпус газа способствует увеличению времени защиты от внешней среды, но оболочка корпуса должна быть более прочной и, следовательно, более массивной.

2.2. Оценочные расчеты степени герметичности блока РЭС

Допустимое истечение из гермокорпуса (дм3 Па/с) может быть определено по формуле Q=VDP/Dt, где DP – начальное избыточное давление газа внутри гермоблока, Па; Dt – время хранения и работы блока, с; V – объем блока, дм3 . Если, например, V=0,5 дм3, DP=0,3×105 Па, Dt=2,5×108 с (8 лет), то Q=0.610-4 дм3×Па/с. Если мал объем, заполненный газом, или велико истечение, то гермокорпус не обеспечит надежной работы в течение заданного времени. В этом случае надо либо отрабатывать технологический процесс герметизации с целью уменьшения течи, либо увеличивать объем оболочки, либо повышать начальное давление в ней. Второй и третий пути не являются эффективными, так как ведут к увеличению габаритов либо массы гермоблока. Приемлемыми считаются следующие течи для блоков с различным свободным объемом: 10-7 дм3 ×Па/с (объем 0,1…0,4 дм3), 10-4…10-5 дм3 ×Па/с (объем 0,5…5 дм3), 10-3…10-4 дм3 ×Па/с (объем более 5 дм3). Течь для разъема типа РПС-1 не должна превышать 10-10 дм3 ×Па/с.


2.3. Расчет времени влагозащиты гермооболочки РЭС

Время влагозащиты t определяет способность гермокожуха или гермооболочки сохранять работоспособным находящееся внутри РЭС или его отдельный компонент и находится в зависимости от физических характеристик материала и конструктивно-технологических особенностей изделия. Основным физическим параметром, определяющим t является коэффициент влагопроницаемости материала оболочки, значение которого зависит от состава материала и температуры. Коэффициент влагопроницаемости - В определяется уравнением диффузиозной проницаемости и выражается массой паров воды, прошедшей в единицу времени через единицу площади при единичном градиенте концентрации или давления. Единица измерения [кг/(м×с×н/м2)] или, упрощая эту размерность, ее можно получить как [c].

Влагопроницаемость металлических оболочек РЭС при одинаковых геометрических размерах существенно ниже, чем полимерных, поэтому далее будут рассматриваться лишь последние. Для ряда систем полимер-вода диффузия, являющаяся основным механизмом переноса влаги через стенку гермооболочки, может быть записана в случае применения закона Фика в форме

 (1)

где D – коэффициент диффузии, являющийся функцией концентрации, если у поверхности полимера поддерживается постоянная концентрация с водяных паров.

Для описания концентрационной зависимости применяется полуэмпирическое выражение вида

 (2)

где a - константа, DC=0 – коэффициент диффузии, экстраполированный к нулевой концентрации влаги. Коэффициент D наиболее резко меняется в области малых концентраций влаги.

Температурная зависимость коэффициента влагопроницаемости выражается уравнением вида

 (3) где B0, E и R – константы (при с=const), T – абсолютная температура.

Решение уравнения диффузии дает время влагозащиты оболочки выраженное через ее геометрические параметры и условия внешней и внутренней сред. Основными величинами, которые определяют необходимый срок службы изделия при заданных условиях, являются коэффициент влагопроницаемости материала приведенный ниже в таблице и толщина стенок оболочки. Для случая если влагозащита осуществляется заливкой или опрессовкой герметизирующего материала расчетное время в с защиты оболочки можно определить по формуле

 (4) где d – толщина оболочки, м; D – коэффициент диффузии, м2/с; р0 – давление паров окружающей среды; ркр –давление паров влаги, соответствующее ее критической концентрации, после достижения которой появляются отказы. Расчетное время влагозащиты не является определяющим при выборе материала, так как надо оценить внутренние напряжения после полимеризации и в диапазоне температур, адгезию оболочки к компоненту, e и tgd, электрическую и механическую прочность, токсичность и т. д.

При использовании полого полимерного корпуса время влагозащиты (с) определяется временем задержки проникновения влаги через слой полимеров и временем накопления влаги внутри корпуса до наступления критического давления паров (ркр):

 (5) где V –внутренний объем оболочки, м3; h – коэффициент растворимости влаги в материале оболочки, с2/м2; d – толщина стенки оболочки, м; S – площадь проникновения влаги через оболочку, м2; р0 – давление окружающей среды, Па; D – коэффициент диффузии материала оболочки, м2/с; В – коэффициент влагопроницаемости оболочки, с. Влажностные параметры некоторых герметизирующих полимерных материалов

№ Материал В, с D, м2/с h, c2/м2 Назначение материала

1 Фторопласт-4 1,010-16 8,3410-13 1210-5 Герметизирующие прокладки

2 Полиэтилен 6,2710-16 6,410-13 9,810-4 Элементы конструкции высокочастотных узлов

3 Полистирол 4,2210-15 3,3210-11 12,610-5 То же

4 Пресс-материал ЭФП-63 1,8310-16 6,110-13 310-5 Монолитный пластмассовый корпус

5 Порошковый компаунд ПЭП-17 8,010-16 1,1410-12 710-4 Герметизация узлов вихревым напылением

6 Клей ВК-9 3,310-16 6,510-13 5,6310-4 Крепление элементов на плату

7 Лак ФП-525 4,510-16 1,1810-12 3,810-4 Бескорпусная герметизация ИС

8 Компаунд ЭК-16Б 2,0810-16 6,410-13 3,2510-4 Заливка элементов и узлов РЭС

9 Пластмасса

 К-124-38 1,6610-16 8,3410-14 2,010-3 Полый пластмассовый корпус

10 Компаунд ЭКМ 4,110-16 7,110-13 5,7710-4 Герметизация полупроводниковых ИС

11 Кремнийорганический эластометр СКТН 8,210-15 8,210-12 1,010-3 Заливка ферритовых элементов

12 Компаунд ПЭК-19 7,810-16 2,110-12 3,710-3 Заливка узлов РЭС

13 Лак УР-231 5,210-16 3,510-12 1,4810-4 Обволакивание печатных плат


СПИСОК ЛИТЕРАТУРЫ

1. Волков В.А. Сборка и герметизация микроэлектронных устройств. – М.: Радио и связь, 1992. – 144 с.

2. Ненашев А.П. Конструирование радиоэлектронных средств: Учеб. для радиотехнич. спец. вузов. – М.: Высш. шк., 1990 – 432 с.

3. Конструирование радиоэлектронных средств: Учеб. для вузов / В.Б. Пестряков, Г.Я. Аболтинь-Аболинь, Б.Г. Гаврилов, В.В. Шерстнев; Под ред. В.Б. Пестрякова. – М.: Радио и связь, 1992. – 432с.

4. СТП ВГТУ 001-98. Курсовое проектирование. Организация, порядок проведения, оформление расчетно-пояснительной записки и графической части. Методические указания №186-98


Информация о работе «Влагозащита РЭС»
Раздел: Промышленность, производство
Количество знаков с пробелами: 22516
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
35521
14
14

... устройство работает от постоянного напряжения, необходимость такого расчета тоже отпадает. Таким образом, производится расчет проводников по постоянному току и расчет механической устойчивости печатного узла. 7.1 Расчет проводников по постоянному току Расчет проводников по постоянному току выполняется с целью определения нагрузочной способности печатных проводников по току, величине ...

Скачать
138399
23
10

... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...

Скачать
118205
14
11

... -4002; 5)  пинцет ППМ 120 РД 107.290.600.034-89; 6)  тара АЮР 7877-4048. Суммарное оперативное время Топ = 2 мин. Комплект технологической документации на технологический процесс сборки и монтажа блока стробоскопического прибора приведен в приложении. 5. ПРОЕКТИРОВАНИЕ УЧАСТКА СБОРКИ И МОНТАЖА Внедрение на предприятии механизированных, автоматизированных и автоматических поточных линий ...

Скачать
98975
2
0

... информации о количестве полученной потребителем или выработанной производителем тепловой энергии, температуре, давлении, объеме (массе) теплоносителя и о времени работы в открытых и закрытых водяных системах теплоснабжения при давлениях до 1,6 МПА (16 кгсм2) и температурах до +150 °С. Область применения - теплоэнергетика, системы коммерческого учета расхода горячей воды и тепловой энергии, ...

0 комментариев


Наверх