Основні поняття теорії сигналів


1. Роль сигналів у процесах обміну інформацією

Життєдіяльність людини проявляється у керуванні виробничими процесами, технічними засобами, в управлінні окремими галузями господарства і державою загалом, у творчій діяльності, в суспільних явищах.

При цьому відбувається інтенсивний обмін інформацією між окремими людьми, між людиною та природою, між людиною та технічними засобами, між окремими підсистемами складних систем різного призначення тощо.

Під інформацією розуміють відомості про різноманітні процеси (фізичні, суспільні тощо), про характеристики та параметри досліджуваних об'єктів, що їх використовують у практичній діяльності.

Отже, серед численних технічних систем особливе місце займають так звані інформаційні системи, призначені для передавання (приймання), перетворення та зберігання інформації.

Ha відміну від систем передавання енергії, для яких основним показником якості є коефіцієнт корисної дії, показники якості інформаційних систем характеризують здатність передавати, накопичувати та перетворювати потрібну кількість інформації за одиницю часу при допустимих спотвореннях та затратах. Очевидно, що поняття затрат при передаванні інформації охоплює енергетичні, апаратні, малогабаритні та інші затрати.

Одна й та ж інформація може бути представлена в різних формах. Конкретну форму представлення інформації називають повідомленням. Наприклад, повідомлення про прогноз погоди може бути звуковим сигналом, письмовим текстом, графічним зображенням тощо.

Для того, щоб повідомлення передати до адресата, треба використати певний матеріальний носій, здатний поширюватися у навколишньому середовищі й одночасно певним чином відтворювати повідомлення. Такий матеріальний носій повідомлення прийнято називати сигналом.

Як сигнали можуть бути використані електричні, механічні, звукові, ультразвукові, електромагнітні та світлові коливання. Найбільш поширеним способом подання інформації є її перетворення в електричні сигнали у кодуючому пристрої. Після цього виконується перетворення, що називається модуляцією сигналу.

Останнє перетворення означає процес змінювання параметра сигналу у відповідності з переданим повідомленням. Відзначимо, що одне й те ж повідомлення може бути відображене в сигнал за допомогою різних видів кодування та модуляції.

Передавання сигналів від передавального пункту до приймального здійснюється через певне фізичне середовище, яке називають каналом зв'язку. Як правило, при цьому сигнали спотворюються завадами, що носять випадковий характер.

Залежно від віддалі між передавальним та приймальним пунктами та від характеру інформації вибирають таке фізичне середовище та параметри сигналів, які забезпечують ефективне передавання інформації в лінії чи каналі зв’язку.

Наприклад, при незначній віддалі між передавачем і приймачем та при низькочастотному характері сигналу доцільно використовувати лінію дротового зв'язку, в якій ефективно поширюються постійний струм та струми низької частоти (нижче декількох десятків кГц.).

Використання електромагнітних хвиль високих частот (0,1... 10 МГц), які ефективно поширюються у вільному просторі, в лініях кабельного зв'язку, хвилеводах, світловодах, дає змогу збільшити відстань між передавачем та приймачем, усунути обмеження на їх параметри.

Більшість радіоелектронних систем функціонує на основі використання електромагнітних коливань та радіохвиль для передавання та приймання інформації, поданої у вигляді електричних сигналів (широкомовні, телемеханічні, навігаційні, локаційні, телевізійні, інформаційно-вимірювальні системи тощо).

Виділяють чотири основні діапазони електромагнітних коливань:

•  радіохвилі;

•  оптичне випромінювання (інфрачервоне, видиме, ультрафіолетове);

•  рентгенівське випромінювання;

•  гамма-випромінювання.

Основні їх характеристики наведені в табл. 1.

Таблиця 1 – Діапазони електромагнітних коливань

Діапазон

Довжина хвилі  , м

Частота f, Гц
Радіодіапазон

Оптичний діапазон

Рентгенівський діапазон

Гамма-діапазон

Зауважимо, що зі зменшенням довжини хвиль дедалі більше проявляється квантовий характер електромагнітного випромінювання і менше хвильові властивості. Тому при найменуванні діапазонів говорять, відповідно, про радіохвилі і оптичне, рентгенівське та гаммавипромінювання.

Діапазон радіохвиль прийнято ділити на піддіапазони, вказані в табл. 2.

Таблиця 2 – Діапазони радіохвиль

Піддіапазон хвиль

Довжина хвилі

Частота f
Декамегаметрові

(105…104) Км

(3…30) Гц
Мегаметрові

(104…103) Км

(30…300) Гц
Гектокілометрові (1000…100) Км 300 Гц...3 кГц
Міріаметрові (наддовгі) (100…10) Км (3…30) кГц
Кілометрові (довгі) (10…1) Км (30…300) кГц
Гектометрові (середні) 1 Км…1 м 300 кГц...3 МГц
Декаметрові (короткі) (100…10) м (3…30) МГц

(10…1) м

1 м…1 дм

(10…1) см

(30…300) МГц

(0.3…3) ГГц

(3...30) ГГц

Міліметрові (10…1) мм (30…300) ГГц
Субміліметрові (1…0,1) мм (300…3000) ГГц

Примітка: Довжина хвилі , взаємозв’язана з частотою коливань  співвідношенням: , де  м/с – швидкість поширення електромагнітних хвиль у вакуумі.

У разі передавання інформації у такий спосіб виникає додаткова проблема перетворення низькочастотного інформаційного сигналу у високочастотне коливання (радіосигнал), яке можна ефективно передавати по радіоканалу. Згадане перетворення називають модуляцією і його суть полягає у тому, що на передавальному пункті генерують високочастотне коливання, один або декілька параметрів якого змінюються пропорційно низькочастотному інформаційному сигналові.

Отримане в результаті модуляції високочастотне коливання називають модульованим коливанням і його передають адресатові по радіоканалу. Оскільки первинне високочастотне коливання виконує роль носія низькочастотного інформаційного сигналу, то його називають несучим коливанням.

Очевидно, що на приймальному пункті треба реалізувати зворотний процес: перетворити високочастотний модульований сигнал в низькочастотний інформаційний сигнал, який відтак перетворюється в повідомлення у вигляді, зручному для сприйняття адресатом. Перше перетворення називають демодуляцією або детектуванням, а друге – декодуванням.

Ще одна проблема, пов’язана з передаванням інформації, полягає в забезпеченні завадостійкості систем передавання інформації. Річ у тому, що під час передавання сигналів через канал зв’язку на них діють різноманітні завади атмосферного та індустріального походження, а також внутрішні шуми апаратури, які мають випадковий характер і спричиняють спотворення сигналів.

При цьому знижується так звана інформаційна надійність системи, тобто здатність передавати інформацію з високою достовірністю. Тому на приймальному пункті треба провести додаткову обробку прийнятої суміші корисного сигналу та завад (фільтрацію, обмеження тощо) для усунення шкідливого впливу завад і якнайкращого відновлення інформації.

При цьому використовується розв’язувальний пристрій, демодулятор та декодуючий пристрій, які реалізують методи обробки прийнятої суміші сигналу з завадою.

Викладене раніше ілюструє рис. 1, на якому зображена типова структурна схема системи передавання інформації з допомогою радіохвиль.

Рисунок 1 – Структурна схема радіоелектронної системи передавання інформації


Информация о работе «Основні поняття теорії сигналів»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 14071
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
24723
4
0

... автомата повинна містити певну кількість логічний елементів, що утворюють функціонально повну систему для синтезу необхідної комбінаційної схеми. 1.5 Контроль виконання арифметичних операцій Арифметичні операції виконуються на суматорах прямого, оберненого і доповняльного коду. Припустимо, що зображення чисел зберігаються в машині в деякому коді, тобто операція перетворення в заданий код або ...

Скачать
29310
1
0

... Генерування сигналу 5. Модулятор моделювання сигналу-носія  повідомленням 3. Математичний опис сигналів при моделюванні систем зв’язку При моделюванні систем зв’язку важливим є опис реальних сигналів і завад їх математичними моделями, що базуються на основних положеннях теорії сигналів. В системах зв'язку зустрічаються різного виду детерміновані та ...

Скачать
132942
9
2

... каузальних таксисів про свій епістемічний стан; по-друге, яким чином епістемічний стан мовця може впливати на епістемічний світ слухача.   3.2 Прагмаепістемічні особливості складних речень з каузативними конекторами dа, weil, denn Відомо, що в своїй повсякденній діяльності людина дуже часто вдається до розширення свого епістемічного світу шляхом отримання нових знань емпіричним способом або ...

Скачать
24695
0
0

... . Зв’язок контекстно-вільної граматики із автоматом з магазинною пам’яттю. 4. Вхідні і вихідні мови САПР   Вимоги до вхідних і вихідних мов САПР. Їх особливості. Ознайомлення із системою автоматизованого проектування на прикладі САПР. IV. Методи синтезу та оптимізації 1. Основні поняття, визначення, постановка та розв’язок найпростіших оптимізаційних задач   Основні відомості про об'єкт ...

0 комментариев


Наверх