Содержание Введение Плоские кривые линии

Общие сведения о поверхностях

Поверхности вращения линейчатые

Поверхности вращения нелинейчатые

Поверхности с плоскостью параллелизма

Поверхности, задаваемые каркасом

Пространственные кривые и плоскости

Литература


Введение

Кривые линии и поверхности их применение в радиоэлектронике и автоматике.

Этот раздел курса имеет особое значение для графической подготовки инженера. Внешняя и внутренняя форма деталей радиоаппаратов и автоматических устройств является сочетанием гранных и кривых поверхностей. Поэтому нельзя быть грамотным конструктором, не умея задавать поверхности на чертеже, строить линии их пересечения друг с другом и с плоскостью, делать развертки поверхностей и т. д.


Плоские кривые линии

Можно дать несколько различных определений кривой линии как геометрическому образу. Одно из них: кривая линии есть траектория перемещающейся точки.

Если кривая линия совмещается всеми точками с плоскостью, ее называют плоской. Порядком плоской алгебраической кривой считают максимальное число точек ее пересечения с прямой линией. К плоским кривым относятся все кривые второго порядка, подробно изучаемые в аналитической геометрии. На рис. 1 показано построение этих кривых и приведены их канонические уравнения.

Эллипсом является геометрическое место точек М, для которых сумма расстояний до точек F1 и F2 постоянна и равна большой оси АВ (рис. 1, а). Точки F1 и F2 называют фокусами. Построим точку, принадлежащую эллипсу, если даны фокусы F1, .F2 и вершины А, В. Для этого на оси АВ берем произвольную точку L и из фокуса F1 проводим дугу окружности радиусом АL. Затем из фокуса F2 чертим дугу окружности радиусом ВL, пересекающую первую дугу в точке М. Таким образом, F1 М + F2М = АВ.

При равных осях эллипс превращается в окружность, являющуюся геометрическим местом точек плоскости, равноудаленных от данной точки О (рис. 1, б).

Параболой является геометрическое место точек М, для которых расстояния до точки F плоскости и до прямой КN, не проходящей через точку F, равны (рис. 1, в). Вершина О параболы делит расстояние от точки F до прямой КN пополам. Точку F называют фокусом, прямую КN -директрисой. Построим точку М, принадлежащую параболе, если дан фокус F и директриса КN. Для этого проводим прямую LМ II КN и из точки F засекаем ее дугой окружности радиусом МN. Итак, МN = МР


Гиперболой является геометрическое место точек М, для которых разность расстояний до точек F1 и F2 плоскости постоянна и равна расстоянию между вершинами А и В кривой (рис. 1,г)

Точки F1 и F2 называют фокусами, координатную ось X -действительной осью, а У - мнимой. Если даны вершины А, В и фокусы F1 и F2, то принадлежащую гиперболе точку строим следующим образом. На действительной оси берем произвольную точку L. Из фокуса F2 проводим дугу окружности радиусом АL. Из фокуса F1 чертим дугу окружности радиусом ВL, засекая первую дугу в точке М. В итоге:

АL --ВL= АВ.

Кривые второго порядка широко используются в теории и практике. В частности, они являются траекториями движения электронов.


Общие сведения о поверхностях

Поверхностью является геометрическое место линии, движущейся в пространстве по определенному закону. Эту линию называют образующей. Она может быть прямой, и тогда образованную ею поверхность относят к классу линейчатых. Если образующая - кривая линия, поверхность считают нелинейчатой. Линию, по которой перемещают образующую, называют направляющей. В качестве последней иногда используют след поверхности, т. е. линию ее пересечения с плоскостью проекций.

Определителем поверхности называют совокупность условий, задающих поверхность в пространстве.

Поверхность считают заданной, если можно построить проекции любой ее образующей. Одну и ту же поверхность можно образовать движением различных линий. Например, сфера образуется вращением окружности вокруг ее диаметра. Но если точки пересечения сферы с осью вращения соединить по поверхности сферы произвольной кривой, то ее тоже можно принять за образующую данной поверхности.

При изучении кривых поверхностей следует обратить внимание на их сечения тремя координатными плоскостями и уметь по этим сечениям определять поверхность. Последнее особенно важно для освоения некоторых разделов курса высшей математики, которые затем широко используются в электро- и радиотехнике.

Рассматриваемые ниже поверхности классифицированы следующим образом.

·  Поверхности вращения линейчатые.

1.  Конус.

2.  Цилиндр

3.  Однополостный гиперболоид.

·  Поверхности вращения нелинейчатые.

1.  Шар

2.  Тор (круговой, параболический, эллиптический).

3.  Эллипсоид (вытянутый и сжатый).

4.  Двуполостной гиперболоид.

5.  Параболоид.

6.  Поверхность вращения общего вида.

·  Поверхности с плоскостью параллелизма.

1.  Цилиндроид

2.  Коноид (геликоид).

3. Гиперболический параболоид. IV. Поверхности, задаваемые каркасом

 

Поверхности вращения линейчатые

Все поверхности этого класса образованы вращением прямой линии вокруг другой прямой. Две прямые могут занимать относительно друг друга три различных положения. Каждому из них соответствует своя поверхность вращения.

1. Конус образуют вращением прямой СЮ вокруг пересекающейся с ней оси Z (рис. 2, а). Координатные пл. ХОZ и У0Z рассекают конус по пресекающимся прямым ОD, ОЕ, ОК и OF; пл. ХОYдает в сечении точку О; плоскость, параллельная пл. ХОY, пересекает по окружности (DFЕК).

Для построения точки, принадлежащей кривой поверхности, ее проекции располагаем на проекциях линии, лежащей на этой поверхности. Если дана проекция l1 точки L поверхности конуса, то ее проекцию I определяем следующим образом (рис. 2, б).

1-й способ. В пространстве через точку L проводим образующую ОЗ. На чертеже строим проекции о1S1 и этой образующей. На последней по линии связи и находим недостающую проекцию I. С проекцией l1 точки L совпадает проекция m1 точки М, симметричной L относительно фронтальной плоскости, проходящей через ось конуса. Проекцию т этой точки определяем с помощью образующей ОR.

2-й способ. Точку L предполагаем расположенной на окружности, принадлежащей поверхности конуса. На пл. V эта окружность проектируется в линию n1р1, на пл. Н - без искажения; диаметр окружности равен п1р1- По линии связи на построенной горизонтальной проекции окружности и определяем недостающую проекцию I.

Конус участвует в образовании формы диаграммы направленности антенны, поверхности положения объекта в пространстве, антенны и ее облучателя, диффузора громкоговорителя, резонатора, отражателя радиоволн, электроннолучевых трубок и электронных ламп, световода, кулачков, деталей вакуумных установок, рукояток, контактов реле, цапф осей приборов, регистрирующих перьев автоматов и т. д.


Информация о работе «Кривые линии и поверхности, их применение в радиоэлектронике и автоматике»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 13678
Количество таблиц: 0
Количество изображений: 12

Похожие работы

Скачать
112726
9
4

... на материалы для звуковых, ультразвуковых и низких радиочастот, для высоких радиочастот и для СВЧ. По физической природе и строению высокочастотные магнитомягкие материалы подразделяют на магнитоэлектрики и ферриты. Кроме того, при звуковых, ультразвуковых и низких радиочастотах можно использовать тонколистовые рулонные холоднокатанные электротехнические стали и пермаллои. Толщина сталей ...

Скачать
83192
3
36

... , гидравлических системах и проч. Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.4. Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля   Исходные данные для расчета: 1 Соленоид круглого сечения диаметром 30 мм и длиной 200 мм; 2 Материал сердечника – Сталь 20; 3 Провод обмотки ...

Скачать
183923
13
0

... зондирования, коловорот и др.) КТП-2Г КТП-2БП 1 1 КТП-2П 1 УПТ 1 УПИ 1 1 Комплект устройства для фиксации местоположения соединительных муфт кабельной линии связи УФСМ По согласованию с заказчиком   Примечание. Средства измерения 1-5, 10-12, 14-17, 19 и 20 необходимы только в случае исп-я ОК с металл. элементами. 9.1.    Электрические проверки основных ...

Скачать
49575
1
3

... чтобы создать безопасные условия для всех участников дорожного движения. Предложенные мероприятия будут способствовать повышению БДД и снижению числа ДТП по вине водителей. 2.3.3 Абсолютный показатель аварийности по Городищенскому району Волгоградской области Надзор за движением транспорта и проведение профилактических мероприятий в районе осуществляется сотрудниками ГИБДД, личный состав -13 ...

0 комментариев


Наверх