4. Выбор типа передачи и вида зацепления
Конические зубчатые передачи: конические зубчатые колёса применяют, когда необходимо получить передачу вращения между валами, оси которых пересекаются под углом. Наиболее часто применяют передачи с межосевым углом равным 90о. Конические колёса выполняют с прямым, косым и криволинейным (дуговым) направлением зубьев. В приборостроении преимущественно применяют конические колёса с прямыми зубьями.
Червячная передача. Показанная на (рис. 1, а) передача состоит из червяка 1, представляющего собой винт с трапецеидальным или близким к нему профилем витка, и червячного колеса 2. Передача вращения осуществляется между вилами, оси которых перекрещиваются. Во многих механизмах приборов такое расположение валов (рис. 1, б) оказывается наиболее оптимальным. Посредством червячной передачи можно осуществить большие передаточные отношения — до 300 и более; однако наиболее часто I =; 7... 100. Передачи характеризуются плавностью и бесшумностью работы. Обычно червячные передачи используют в качестве редукторов, т. е. когда движение передается от червяка к колесу. Наряду с этим в приборостроении применяют червячные передачи в качестве мультипликаторов, когда движение передается от червячного колеса к червяку (регуляторы скорости и др.). Существенным преимуществом червячных передач является возможность исключения обратной передачи вращения, т. е. от колеса к червяку. К недостаткам червячных передач относятся низкий к. п. д. из-за больших потерь на трение в зацеплении витков червяка с зубьями червячного колеса и необходимость по этой же причине выполнять червячные колеса или их зубчатые венцы из дорогих антифрикционных материалов.
Рис.1
Также есть винтовые передачи, они служат для преобразования вращательного движения в поступательное. Основными деталями винтовой передачи являются винт в виде цилиндра с наружной резьбой и гайка в виде кольца с внутренней резьбой. Винтовые передачи разделяют на силовые и кинематические (отсчетные). Силовые передачи работают при значительных нагрузках и должны иметь высокий к. п. д. и достаточную прочность. Кинематические винтовые передачи должны обеспечивать точность перемещения деталей и узлов приборов.
Также существуют и другие виды передач.
Наиболее распространённым среди видов передач является эвольвентное зацепление, предложенное ещё Эйлером. Благодаря своей технологичности и эксплуатационным качествам.
Эвольвентное зацепление. Наиболее распространенным профилем зубьев колес, отвечающим требованиям основной теоремы зацепления, является эвольвента окружности. Эвольвентой называется кривая, представляющая собой траекторию движения любой точки прямой, перекатывающейся без скольжения по окружности 2 (рис. 2, а). Прямая 1 называется производящей прямой, а окружность 2 — эволютой или (применительно к зубчатому колесу) основной окружностью.
Рис.2
При равномерном вращении колёс точки контакта, перемещаясь с одной и той же скоростью по линии зацепления, будут перемещаться не равномерно по профилю, т. е. два сопряжённых профиля перекатываются друг по другу со скольжением.
Зацепление Новикова применяется для передачи больших крутящих моментов.
Циклоидальные (часовые) зубчатые передачи. Профиль зуба колеса в циклоидальном зацеплении сложный. Он состоит из двух кривых, представляющих собой траектории движения точек двух производящих окружностей 2 и 3 (рис. 3 а) одна (2) их которых катится снаружи, а другая (3) – внутри основной окружности 1.
Рис. 3
При качении производящей окружности 2 образуется эпициклоидальный профиль 3 - гипоциклоидальный профиль М0Мг ножки зуба колеса. При r = r1|2 профиль ножки - гипоциклоиды – становится радиально направленной прямой (рис. 3 б). В циклоидальной зубчатой передачи основные (они же начальные) окружности (рис. 3 в) соприкасаются в полюсе Р. Одна и та же производящая окружность 3 служит для образования ножки зуба колеса при качении её внутри основной окружности 1 и эпициклоидальной головки зуба шестерни (триба) при её качении снаружи основной окружности 2. Аналогично, производящая окружность 4 при качении внутри основной окружности 2 образует ножку зуба шестерни, а при качении снаружи основной окружности 1 – эпициклоидальный профиль головки зуба. По дугам N1P и PN2 производящих окружностей перемещается точка контакта профиля зубьев колёс при работе передачи. Из рассмотренного вытекает, что каждому колесу должен соответствовать вполне определённый триб, поскольку головка зуба колеса образовывается производящей окружностью, служащей одновременно для получения ножки зуба триба. И, наоборот, каждому трибу соответствует вполне определённое колесо.
Основным достоинством циклоидальных передач является возможность изготовления трибов с малым числом зубьев (5…6), что позволяет значительно сокращать их габариты. Это послужило поводом к замене эпициклоидального зацепления профиля головок зубьев другой окружности. В отличие от циклоидального, зацепление таких профилей зубьев называется часовым. Соответствующим выбором радиуса ρ1 заменяющей окружности (рис 4) и её положения относительно центра колеса, определяемого радиусом r1, можно улучшить работу зубчатой передачи в реальных условиях, в частности приблизить начало зацепления к линии центров. Это обеспечивает значительное сокращение сил сопротивления вращению колёс в передаче. При замене дуг эпициклоид головок зубьев дугами окружностей значительно упрощается изготовление дисковых фрез для нарезания колёс и трибов, а также и червячных фрез.
Рис. 4
Разновидностью циклоидального является цевочное зацепление. Оно, по существу, мало отличается от часового. Основное отличие состоит лишь в том, что у зубьев шестерни (триба) отброшен прямолинейный участок ножки зуба и оставлен лишь дуговой профиль головки зуба, доведённый до цилиндра, оформленного конструктивно в виде так называемой цевки. Поэтому цевочное зацепление целесообразно назвать цевочным часовым зацеплением.
... a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95 a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7 a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85 a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8 Определим ширину венца: b= (3…15)m= 10·0,3= 3 Определим высоту зуба: h= 2,5m= 2,5·0,3= 0,75 5. Разработка конструкций редуктора Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса. ...
... 5 установить в опоры скольжения корпуса поз.11. 7. Установить крышку поз12 и прикрутить ее винтами поз.15 и штифтами поз.20. Заключение В курсовом проекте спроектирован редуктор программного механизма. Все требования удовлетворены, и поставленные задачи выполнены. Достигнута необходимая точность работы устройства. В конструкции имеются унифицированные детали. Использованы типовые методы ...
... ); Ø особенности кинематической схемы (развернутая, соосная и с раздвоенной ступенью). 1. Задание на курсовой проект и кинематическая схема Спроектировать одноступенчатый, горизонтальный, конический редуктор (режим работы редуктора спокойный нагрузка нереверсивная, предназначен для длительной эксплуатации; работа односменная; температура окружающей среды +10…+30ºС, срок службы ...
... 5 -7м ), что связано с увеличением площади устоев. 2.3. Определение мощности и выбор электродвигателя для электро- механического привода двустворчатых ворот судоходного шлюза. Электроприводы основных механизмов судоходных гидротехнических сооружений являются ответственными элементами электрооборудования шлюзов. Несоответствие выбранного привода технологическому режиму, неполный счет факторов, ...
0 комментариев