3.5.2.3 Расчет коэффициента теплопередачи

I.  Первое приближение.

Принимаем в первом приближении . Тогда температура стенки со стороны греющего пара равняется:

.

Тогда по формуле (3.29) получаем:

.

При этом удельный тепловой поток от пара к стенке равен:

.

Сумма термических сопротивлений равна:

,

где - соответственно термические сопротивления загрязнений со стороны греющего пара, стенки и со стороны раствора.

По (/1/, табл. XXXI, стр. 531) находим:

,

.

Для стенки:

,

где - толщина стенки, - коэффициент теплопроводности стали (/1/, табл. XXVIII, стр. 529).

,

.

Поскольку удельный тепловой поток от пара к стенке  равен удельному тепловому потоку через стенку , то можно получить:


,

при этом  - температура стенки со стороны раствора равна:

,

.

При температуре  удельная теплоемкость, динамический коэффициент вязкости и коэффициент теплопроводности, вычисленные, соответственно, по формулам 3.11, 3.15, 3.20 равны:

,

,

;

,

.

Подставляя найденные значения в формулу 3.27, получаем значение критерия Прандтля при температуре стенки:

.

По формуле 3.28 находим в коэффициент теплоотдачи от раствора к стенке:

.

Тогда удельный тепловой поток от стенки к раствору равняется:

,


где  - вычисленная ранее средняя температура раствора.

.

Расхождение между  и  в первом приближении составляет

.

Составляем таблицу 3.4, в которую заносим результаты первого и второго приближений , а также проверочный расчет.

Таблица 3.5

Прибли-жения и провероч-ный расчет Конденсация греющего пара

I 142,9 137.9 5,0 10485 52428
II 142,9 131,4 11,5 8514 97913
III 142,9 132.6 9,1 9027 82148
Прибли-жения и провероч-ный расчет Стенка и ее загрязнения Нагревание раствора

I

118,73 1,642 2181 116899
II

98,2 1,804 2130 75402
III

100,08 1,783 2137 83642

II.  Второе приближение.

Принимаем . Результаты - табл 3.5 строка II.

Расхождение по второму приближению: .

По результатам расчетов первого и второго приближения строим график . Полагая что при малых изменениях температуры, поверхностные плотности  и  линейно зависят от , графически определяем  (рис. 3.3, точка А). Графическая зависимость

III.  Проверочный расчет.

Расчеты аналогичны расчетам первого приближения (см. табл. 3.4, строку III).

Расхождение  и :

Коэффициент теплопередачи равен:

.

Поверхность теплообмена:

 Так как , то истинную поверхность теплообменника рассчитывают по формуле:

,

где - внутренний диаметр труб, - число труб,  - длина труб.

.

Запас поверхности:

.



Информация о работе «Процессы и аппараты химической технологии»
Раздел: Химия
Количество знаков с пробелами: 35522
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
52959
10
6

... ,1 3 Расчет конденсатора паров толуола Кожухотрубные конденсаторы предназначены для конденсации паров в межтрубном пространстве, а также для подогревания жидкостей за счет теплоты конденсации пара. Рассчитаем необходимую поверхность теплообменника, в межтрубном пространстве, которого конденсируется толуол, с заданным массовым расходом GА = 2,92 кг/с, удельная теплота конденсации rА = 362031 ...

Скачать
183168
7
85

... БИОРЕАКТОРА Лист 90 Доклад. Уважаемые члены государственной экзаменационной комиссии разрешите представить вашему вниманию дипломный проект на тему: «Система автоматизированного управления процесса стерилизации биореактора» Процесс стерилизации биореактора (или ферментера) является важной стадией процесса биосинтеза антибиотика эритромицина. Суть процесса стерилизации состоит в ...

Скачать
107273
1
429

... .В. Иванова«Автоматизация технологических процессов основных химических производств»Методические материалы по курсу лекций (в двух частях)Часть 2.2003г. УДК 66-52:66(075)Иванова Г.В. Автоматизация технологических процессов основных химических производств: Методическое пособие. Часть 2 / СПбГТИ(ТУ).-СПб., 2003.- 70с. Методическое пособие предназначено для курса лекций по учебной дисциплине « ...

Скачать
10057
0
1

... отличающиеся различной интенсивностью тепло- и массообменных процессов. Целью работы являлся анализ эффективности теплообмена в однотрубных и кожухотрубных аппаратах при движении жидких потоков без и с протеканием быстрой экзотермической химической реакции при различных гидродинамических режимах. При проведении быстрых экзотермических химических реакций (kі102±1 л/мольЧс) в трубчатых аппаратах ...

0 комментариев


Наверх