3.4.2. Изучение команд манипуляции флажками и передачи управления
1) Изучить организацию стека микроконтроллера ВЕ48;
2) Рассмотреть систему команд манипуляции флажками, условных и безусловных переходов, вызова подпрограмм;
3) Ознакомиться с приведенными ниже примерами программ на языке ассемблера;
4) Произвести ввод, отладку и трансляцию в объектный код этих программ;
5) Выполнить программы по шагам с просмотром результатов выполнения в регистрах и оперативной памяти.
Пример 2.1. Определить четность числа единиц в аккумуляторе. После выполнения программы аккумулятор сохранит свое значение, флаг 0 будет установлен, если число единиц в аккумуляторе было нечетно. Флаг F0 входит в состав PSW и в данном примере специфицирован пользователем для выполнения функций флага паритета.
CLR F0 ; сброс F0
MOV R7,#8 ; число повторов
LOOP: RRC A ; пересылка бита A.0 в перенос
JNC NEXT ; пропустить, если бит равен 0
CPL F0 ; подсчет паритета
NEXT: DJNZ R7,LOOP ; повторить 8 раз
Пример 2.2. Передать управление по метке LL, если переключатель банка регистров (бит PSW.4) установлен:
JBSET: MOV A,PSW ; передача PSW в аккумулятор
JB4 LL ; переход, если A.4 = 1
LL: … ;
Пример 2.3. Осуществить переход из нулевого банка памяти программ к программе с именем ROUT, расположенной в первом банке памяти программ:
SEL MB1 ; установка флага MB
JMP ROUT ; переход к программе ROUT
Пример 2.4. Множественное ветвление программы. Допустим, что результатом работы некоторой программы является число X (в пределах от 0 до 15). Необходимо организовать передачу управления 16 различным программам с именами ROUT0–ROUTF в зависимости от вычисленного значения X:
ORG 0 ; задание начального адреса программы
ANL A,0F ; сброс старшей тетрады A
; во избежание ошибки перехода
JMPP @A ; обращение к таблице векторов переходов
; таблица векторов переходов
DB ROUT0 ; начальный адрес программы ROUT0
DB ROUT1 ; начальный адрес программы ROUT1
…
…
…
DB ROUTF ; начальный адрес программы ROUTF
Преобразование чисел из одной системы счисления в другую. Перевод шестнадцатеричных чисел в двоичную систему счисления достигается представлением цифр шестнадцатеричного числа четырехразрядными двоичными числами. Например,
A7B = 1010 0111 1011
A 7 B
Перевод в десятичную систему счисления. Так как перевести числа из двоичной системы в шестнадцатеричную и обратно нетрудно, то для простоты выкладок рассмотрим перевод чисел из шестнадцатеричной системы и обратно.
В качестве примера перевода числа из шестнадцатеричной системы в десятичную систему выберем число 9A5F:
9A5F16 = (9∙163 + 10∙162 + 5∙161 + 15∙160)=(((9∙16+10)∙16+5)∙16+15) = 3951910
9 A 5 F
Здесь путем группировки членов вычисление полиномов представлено в форме так называемой схемы Горнера, обеспечивающей минимальное число выполняемых операций умножения.
Покажем действия по переводу чисел из десятичной системы счисления в шестнадцатеричную на примере преобразования десятичного числа 3951910 в шестнадцатеричную систему счисления
39519 |16
39504 2469 |16
15 2464 154.................................................................. |16
F 5 144 9
10
A
Отсюда 3951910 = 9A5F16. Таким образом, последовательно деля на 16 целую часть десятичного числа и образующиеся частные, получаем в последнем частном и остатках цифры всех разрядов шестнадцатеричного представления числа.
Пример 2.5. Преобразование кодов из одной системы счисления в другую. Преобразование кода из одной позиционной системы счисления в другую осуществляется делением исходного числа на основание новой системы счисления. При этом деление должно выполняться по правилам исходной системы счисления. Например, для преобразования двоичного числа в двоично-десятичное исходное двоичное число должно быть поделено на 10 (10102). Деление должно осуществляться по правилам двоичной арифметики.
Пусть требуется выполнить преобразование 8-битного двоичного числа в двоично-десятичное. Исходный двоичный код хранится в аккумуляторе. Результат преобразования состоит из 12 бит: младшие 4 бита – единицы, представляют собой остаток от деления исходного числа на 10; следующие 4 бита – десятки, представляют собой остаток от деления на 10 полученного частного; старшие 4 бита – сотни, являются частным от второго деления:
BBD: CALL DIV10 ; деление исходного кода на 10
MOV R7,A ; сохранение остатка в R7
MOV A,R1 ; загрузка в аккумулятор частного
CALL DIV10 ; деление частного на 10
SWAP A ; передача остатка в старшую тетраду A
ORL A,R7 ; передача R7 в младшую тетраду A
JMP EXIT ; выход из процедуры
; подпрограмма деления на 10
; исходный двоичный код в аккумуляторе
; результат: в R1 – частное, в аккумуляторе – остаток
DIV10: MOV R1,#0 ; сброс R1
SUB10: ADD A,#(NOT(10)+1) ; вычитание 10 из делимого
INC R1 ; инкремент частного
JC SUB10 ; цикл, если остаток >= 0
DEC R1 ; восстановление частного
ADD A,#10 ; восстановление остатка
RET ; возврат
EXIT: … ;
В результате выполнения процедуры в младшей тетраде R1 хранятся сотни, в аккумуляторе – десятки и единицы двоично-десятичного эквивалента исходного двоичного числа.
еоценить значение МП и микроЭВМ при создании автоматизированных средств измерений, предназначенных для управления, исследования, контроля и испытаний сложных объектов. Развитие науки и техники требует постоянного совершенствования средств измерительной техники, роль которой неуклонно возрастает. Основные понятия и определения Понятия и определения, используемые в измерительной технике, ...
... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...
... современным компьютерам, должна стать мощным усилителем мыслительных процессов в образовании. И здесь особая роль отводится преподавателям, которые являются носителями технологии образования и которые должны творчески переосмыслить накопленный интеллектуальный багаж в соответствии с новыми технологическими возможностями. До настоящего времени в российском обществе отсутствует четкое понимание ...
... (ШД), адресов (ША) и управления (ШУ). Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены ...
0 комментариев