3.2 Определение требуемого напора насоса

Требуемый напор насоса определяем по формуле:

, (17)

где Н=8м– высота подъёма жидкости в насосной установке (от насоса), м,

hвс – высота всасывания насоса, hвс= 0,5 м;

Рк – давление в стерилизуемом аппарате , Рк = 0,55 МПа;

Рат – атмосферное давление, Рат = 9,81×104 Па;

 – суммарные потери напора в сети, = 9,17 м.

По формуле (17):

м.

3.3 Выбор типа и марки насоса по расчетному напору и заданной подаче

По полю характеристик V – Н насосов для чистой воды [8, c. 328] по заданной подаче V = 4×10-3 м3/с (14,4 м3/ч) к рассчитанному требуемому напору Нтр =64,4 м выбираем насос по ГОСТ 22247-96: К 290/18б-У2, n=1450 об/мин.

3.4 Построение характеристик насоса и трубопровода. Определение рабочей точки насоса

По каталогу насоса для химических производств [6] строим рабочие характеристики выбранного насоса – зависимости Н = f(V), N = f(V), h = f(V).

Для построения характеристики трубопровода рассмотрим его уравнение (17).

Первые два слагаемых уравнения являются величиной постоянной и определяют собой статистический напор, тогда

,

где  м.


Так как трубопровод эксплуатируется в квадратичной зоне сопротивлений (Re >105), то зависимость потерь напора в трубопроводе от изменения скоростей носит квадратичный характер, т.е.

, (18)

где в – коэффициент пропорциональности, определяемый по координатам т. А, лежащей на этой кривой.

Н = f(V), η=f(V)

Для этой точки имеются:

 м3/с – (по заданию);

НД = Нтр = 64,4м

 м.

Отсюда

.

Уравнение кривой сопротивления трубопровода, выражающее собой потребные напоры насоса при подаче различных расходов по заданному трубопроводу


Задаваясь различными значениями расходов V, рассчитываем соответствующие им значения Нтр = f(V).

Результаты расчета сводим в таблицу 2.

Таблица 2 Характеристики трубопровода

V

Нст, м

, м

, м

м3

м3

0 0 55,3 0 55,3
0,0011 4 0,69 55,99
0,0016 6 1,46 56,76
0,0022 8 2,76 58,06
0,0028 10 4,47 59,77
0,0039 14 8,67 63,97
0,0044 16 11,03 66,33
0,0050 18 14,25 69,55
0,0055 20 17,24 72,54

По данным таблицы 2 строим характеристику трубопровода Нтр = f(V), отложив на оси ординат величину Нст =55,3 м.

Точка пересечения характеристик насоса и трубопровода определяет рабочую точку А. Координаты рабочей точки:

VА = 16 м3/ч = 0,0044 м3/с; Н = 66 м;  %;

Ne= кВт.

Так как VА = 16 м3/ч больше заданной подачи VА=14,4 м3/ч, то необходимо отрегулировать работу насоса на сеть одним из способов: прикрытием задвижки на напорной линии (дросселирование); уменьшением частоты вращения вала рабочего колеса насоса; обрезкой рабочего колеса.


Заключение

Расчет курсового проекта состоит из трех основных расчетов: теплового, конструктивного и гидравлического.

В тепловом расчете определили необходимую площадь теплопередающей поверхности, в нашем случае F = 17,5 м2, которая соответствует заданной температуре и оптимальным гидродинамическим условиям процесса. По полученным расчетным путем данным выбрали теплообменник  гр. А ГОСТ 15122-79.

В конструктивном расчете произвели расчет диаметров штуцеров, выбрали конструкционные материалы для изготовления аппаратов, трубных решеток, способ размещения и крепления в них теплообменных трубок и трубных решеток к кожуху; конструктивную схему поперечных перегородок и расстояния между ними; распределительные камеры, крышки и днища аппарата; фланцы и прокладки.

В гидравлическом расчете выбрали необходимый насос по полученному требуемому напору, в нашем случае Hтр=64,4 м и заданная подача V=4·10-3 м3/с (234 м3/ч) выбираем насос CR 15-6, мощность которого 5,5 кВт, который обеспечивает заданную подачу и рассчитанный напор при перекачке воды.


Список использованных источников

1.  Логинов А.В. Процессы и аппараты химических и пищевых производств (пособие по проектированию) / А.В. Логинов, Н.М. Подгорнова, И.Н. Болгова. – Воронеж: ВГТА, – 2003. – 264 с.

2.  Павлов К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учеб. пособ. для студ. химико-технол. спец. вузов / К.Ф. Павлов, П.Г. Романков, А.А. Носков; Под ред. П.Г. Романкова. – 8-е изд., перераб. и доп. – Л.: Химия, 1976. – 552 с.

3.  Лащинский А.А. Основы конструирования и расчета химической аппаратуры. Справочник / А.А. Лащинский, А.Р. Толчинский; Под ред. Н.Н. Логинова. – 2-е изд; перераб. и доп. – Л.: Машиностроение, 1970. – 753 с.

4.  Ю.И. Дытнерский, Г.С. Борисов, В.П. Брыков. Основные процессы и аппараты химической технологии: пособие по проектированию / Под ред. Ю.И. Дытнерского, 2-е изд., перераб. и допол. – М.: Химия, 1991. – 496 с.

5.  Насосы и насосные установки пищевых предприятий: Учеб. пособие / А.В. Логинов, М.Н. Слюсарев, А.А. Смирных. – Воронеж: ВГТА, 2001. – 226 с.

6.  А.Г Касаткин Основные процессы и аппараты химической технологии: Учебник для вузов.- 10-е изд., стереотипное, доработанное. Перепеч. С изд. 1973г.- М.: ООО ТИД "Альянс", 2004.-753с.


Информация о работе «Расчет кожухотрубного теплообменника»
Раздел: Физика
Количество знаков с пробелами: 30414
Количество таблиц: 1
Количество изображений: 14

Похожие работы

Скачать
20528
0
0

... правило, они могут иметь жескую конструкцию. Задание   Спроектировать кожухотрубный теплообменник для нагревания G, кг/с, продукта от начальной температуры tн2 до конечной tк2 теплоносителем с начальной температурой tн1 и конечной температурой tк1. Исходные данные для расчета: Производительность G1 = 3,36 кг/с Начальная температура молока tн2 ...

Скачать
12967
4
6

... аппарата будет выглядеть Р 0,6р-0,8-55,8-2К-01-4, его габариты . Вывод Эти простейшие тепловые расчеты двух теплообменных аппаратов одинаковой тепловой производительности показывают, что коэффициент теплопередачи за счет более значительной турбулизации потоков практически в 1,5 раза выше у пластинчатого теплообменника, чем у кожухотрубного. Площадь теплообмена, необходимая для придания

Скачать
37105
18
8

... теплоносителей на поправочный коэффициент, который определяется по справочникам [4-6]. 1.1 Кожухотрубный теплообменник Для проведения процесса пастеризации продукта выбирается кожухотрубная конструкция теплообменника. Кожухотрубные теплообменники наиболее широко распространены в пищевых производствах. Кожухотрубный вертикальный одноходовой теплообменник с неподвижными трубными решетками ...

Скачать
15826
0
4

... распределительную. Типы промышленных барабанных сушилок разнообразны: сушилки, работающие при противотоке сушильного агента и материала, с использованием воздуха в качестве сушильного агента, контактные барабанные сушилки и др. Типы насадок барабанных сушилок: а – подъемно лопастная; б – секторная; в,г – распределительная; д – перевалочная Достоинства барабанных сушилок: 1 интенсивна ...

0 комментариев


Наверх