1. Определение знака частного: 0Å0=0 2. Определения модуля частного

№ цикла № такта Наименование операции Действие Разряды частного
0 Вычит. делит. А 00 101
из делимого

[-B]д

11 010

R0

11 111 0, 1 1 0 0
1 1 Сдвиг остатка

¬ R0

11 110
2 Прибавление 00 110
формирование

R1 1

00

100
разряда частн.
2 1 Сдвиг остатка

¬ R1

01 000
2 Вычит. делит

[-B]д

11 010
формирование

R2 1

00

010
разряда частн.
3 1 Сдвиг остатка

¬ R2

00 100
2 Вычит. делит.

[-B]д

11 010
формирование

R3

11

110
разряда частн.
4 1 Сдвиг остатка

¬ R3

11 100
2 Прибавл. дел. +B 00 110
формирование

00

010
разряда частн.

С=0,1100

В настоящее время во всех ЭВМ деление производится по способу без восстановления остатков. Это, во-первых, упрощает схему управления процессом деления и, во-вторых, увеличивает быстродействие ЭВМ, так как длительность операции деления без восстановления остатков равна минимальной длительности операции деления с восстановлением остатков.

При выполнении операции деления результат получится одинаковым, если сдвигать остатки от деления влево либо делитель вправо. Следовательно, возможны две схемы выполнения деления:

1) деление без восстановления остатков со сдвигом делителя вправо;

2) деление без восстановления остатков со сдвигом остатка влево.

Для реализации второго варианта необходимы: n-разрядный регистр делителя; (n+ 1)-разрядный регистр частного со сдвигом влево; n- или (n + 1)-разрядный сумматор со сдвигом влево и схема управления. Анализ обеих схем показывает, что второй вариант примерно на 40 % экономичнее по оборудованию по сравнению с первым. Выбор типа длительного устройства при проектировании машины обычно не является самостоятельной задачей. Поэтому на практике вначале по заданным техническим условиям выбирается схема множительного устройства вследствие того, что умножение является примерно в 10 раз более частой операцией. После этого выбирается наиболее совместимая с устройством умножения схема делительного блока. Однако при проектировании специализированных ЭВМ может быть принят другой порядок выбора структур отдельных устройств. Если сравнивать приведенные схемы деления со схемами множительных устройств, то оказывается, что схема первого варианта деления во многом совпадает с четвертой схемой умножения. Второй вариант схемы деления хорошо совместим с третьей схемой умножения.

6. Способы ускоренного деления

Необходимость ускорения деления следует из наличия весьма эффективных методов ускорения умножения. Способы ускоренного деления делятся на две группы: для первой группы в каждом цикле формируется одна или несколько цифр частного и новый остаток; вторая группа предполагает выполнение деления через умножение или с использованием другой процедуры.

Суть одного из способов ускоренного деления первой группы состоит в том, что в частное можно записать сразу последовательность одинаковых цифр (нулей или единиц), если в результате очередного шага деления получен остаток по абсолютной величине либо достаточно малый, либо близкий к делителю. В первом случае, если остаток имеет k нулевых старших разрядов, то для определения очередных цифр частного нет нужды вычитать делитель k раз из остатка. Необходимо в k очередных разрядов частного сразу записать нули, сдвинуть остаток на k разрядов влево, прибавить к нему алгебраически делитель и продолжить операцию деления.

Во втором случае нужно вначале произвести вычитание делителя из остатка, затем разность сдвинуть на k разрядов влево, после чего к полученному числу прибавить делитель. При этом в частное записывается k единиц.


7. Деление чисел в машинах с плавающей запятой

Если числа А и В заданы в нормальной форме, то их частное будет равно:

С =a:b=(a:b) 2 (mа-mb)

где а и b - мантиссы, а maи mb— порядки соответственно чисел А и В. Отсюда следует, что операция деления в машинах с плавающей запятой выполняется в пять этапов.

1-й этап. Определение знака частного путем сложения по модулю 2 знаковых цифр мантисс операндов.

2-й этап. Деление модулей мантисс операндов по правилам деления чисел с фиксированной запятой.

3-й этап. Определение порядка частного путем вычитания порядка делителя из порядка делимого.

4-й этап. Нормализация результата и его округление.

5-й этап. Присвоение знака мантиссе результата.

Два первых этапа полностью совпадают с этапами деления чисел с фиксированной запятой. Третий этап представляет собой обычное сложение в инверсных кодах.

При делении нормализованных чисел денормализация результата возможна только влево и только на один разряд. Это обусловлено тем, что мантисса любого нормализованного числа лежит в пределах

2-1 £ |а|< 1— 2-n

Тогда наименьшая и наибольшая возможные величины мантиссы частного равны соответственно


т. е. мантисса частного лежит в пределах 2-1 £ |y|< 2.

Поэтому на четвертом этапе может возникнуть необходимость нормализации мантиссы частного путем ее сдвига вправо на один разряд и увеличения порядка частного на единицу. Если же перед делением сдвинуть делимое на один разряд вправо, то на 4-м этапе может потребоваться нормализация результатов влево на 1 разряд.

При выполнении третьего (определение порядка) этапа порядок частного может оказаться больше допустимого, т. е. произойдет переполнение разрядной сетки, которое расценивается как аварийная ситуация. Может быть также получен порядок частного, который меньше допустимого. Если на втором этапе вычислено частное |y| > 1, то на четвертом этапе при сдвиге частного вправо его порядок должен быть увеличен на единицу. При этом становится окончательно ясно, во-первых, возникло ли переполнение разрядной сетки порядка или нет, во-вторых, будет ли порядок частного меньше допустимого значения. Если имеет место исчезновение порядка, то результат деления по указанию программиста заменяется машинным нулем.


Выводы

В процессе написания реферата мы ознакомились с:

- выполнением операций умножения в ЭВМ; - умножением чисел, представленных в форме с плавающей запятой; - методами ускорения операции умножения;

- матричным методом умножения;

- выполнением операций деления в ЭВМ; - делением чисел с восстановлением остатков; - делением без восстановления остатков; - способами ускоренного деления; - делением чисел в машинах с плавающей запятой.

Литература

1. Самофалов К.Г., Романкевич А.М., и др. Прикладная теория цифровых автоматов. - Киев. “Вища школа” 1987.

2. Соловьев Г.Н. Арифметические устройства ЭВМ. - М. “Энергия”. 1978.

3. Савельев А.Я. Прикладная теория цифровых автоматов - М. “Высшая школа”. 1987.

4. Каган Б.М. Электронные вычислительные машины и системы. - М. Энергоатомиздат. 1985.

5. Лысиков Б.Г. Арифметические и логические основы цифровых автоматов. Минск. “Вышэйшая школа”. 1980.


Информация о работе «Выполнение операций умножения и деления в ЭВМ»
Раздел: Информатика, программирование
Количество знаков с пробелами: 30109
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
41541
8
0

... с их использованием, имеют свою устойчивую долю рынка. В данной курсовой работе на примере цифрового сигнального процессора семейства ADSP-21xx производится разбор команд умножения и деления, выполняемых в АЛУ. Обобщенная структурная схема персонального компьютера Центральный процессор в персональных компьютерах представляет собой микропроцессор, то есть построен на одной микросхеме (БИС,СБИС). ...

Скачать
28981
1
1

... нельзя рассматривать как единое целое. Кроме того, необходимо кроме сумматора иметь и вычитатель. В результате этого прямой код не применяется для выполнения операции алгебраического сложения, но применяется для выполнения операций умножения и деления.   1.1.3 Дополнительный код В дополнительном коде операция вычитания заменяется операцией алгебраического сложения. При этом знаковый разряд и ...

Скачать
46438
7
0

... позволит технически реализовать четыре действия арифметики в одном устройстве, называемом арифметико-логическом (АЛУ), используя одни и те же электрические схемы. 1.4.1. Представление чисел со знаками При выполнении арифметических операций в ЭВМ применяют прямой, обратный и дополнительный коды. Как уже говорилось выше, кодом называют такую запись числа, которая отличается от естественной и ...

Скачать
98577
17
7

... , связанный с формированием представлений о системно-информационном подходе к анализу окружающего мира, о роли информации в управлении, специфике самоуправляемых систем, общей закономерности информационных процессов в системах различной природы. Основой мировоззрения, главным его компонентом является научная картина мира, рассматриваемая как высший уровень систематизации и обобщения научных ...

0 комментариев


Наверх