3.  Оценка адекватности построенной модели

Проверку независимости осуществляем с помощью dw-критерия Дарбина-Уотсона по формуле:

Для вычисления коэффициента Дарбина-Уотсона построим вспомогательную таблицу (8):

Таблица 8

t

Точки поворота

1 -2,333 5,443
2 -0,333 * 0,111 4
3 -2,333 * 5,443 4
4 3,666 * 13,440 35,988
5 2,666 * 7,108 1
6 3,666 * 13,440 1
7 -1,333 1,777 24,99
8 -2,333 * 5,443 1
9 -1,333 1,777 1

0 6 53,982 72,978

Так как dw попало в интервал от d2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости. Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Поверку случайности проводим на основе критерия поворотных точек по формуле, количество поворотных точек р при n=9 равно 6:

р>

Неравенство выполняется (6>2). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определяем с помощью RS-критерия:

RS=(emax-emin)/S

Расчетное значение RS=2,86 в интервал (2,7 – 3,7) попадает. Следовательно, по данному критерию модель адекватна.

Вывод: модель статистически адекватна.

4) Оценка точности модели

Оценку точности модели проводим на основе использования средней относительной ошибки аппроксимации. Получаем

=5,75%


Вывод: Еотн=5,75% - хороший уровень точности модели.

5) Прогноз спроса на следующие две недели.

Для вычисления точечного прогноза в построенную модель подставляем соответствующие значения фактора t=n+k:

Для построения интервального прогноза рассчитываем доверительный интервал. При уровне значимости 0,3, доверительная вероятность равна 70%, а критерий Стьюдента равен 1,119:

U(1)=3.841,

U(2)=4.065,

Далее вычисляем верхнюю и нижнюю границы прогноза.

Таблица 9

n+k U(k) Прогноз Верхняя граница Нижняя граница
10 U(1)=3,841 67,333 71,174 63,492
11 U(2)=4,065 72,333 76,398 68,268

6) Графическое представление фактических значений показателя, результатов моделирования и прогнозирования.


Информация о работе «Эконометрическое моделирование: расчет коэффициентов корреляции и регрессии, анализ одномерного временного ряда»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 11110
Количество таблиц: 13
Количество изображений: 5

Похожие работы

Скачать
10967
11
5

... 807417 6 8,34207 210,6129 Выводы: 1.  Решена задача парной регрессии методом наименьших квадратов. 2.  Низкая достоверность результатов объясняется рядом причин: - собрано малое количество статистических данных, выбраны случайные районы за небольшой отрезок времени; - в учебных целях добавлены случайные точки, зависящие от порядкового номера студента и числа студентов в группе; - расходы ...

Скачать
69385
2
3

... исходить из вида обрабатываемых данных. В соответствии с современными воззрениями делим эконометрику и прикладную статистику на четыре области: - статистика случайных величин (одномерная статистика); - многомерный статистический анализ; - статистика временных рядов и случайных величин; - статистика объектов нечисловой природы. В первой области элемент выборки - число, во второй - вектор, в ...

Скачать
344047
91
7

... объектов; б)         наличие данных за предыдущий период; в)         наличие базисных данных; г)         сопоставимость данных.   26. По характеру принимаемых решений экономический анализ подразделяется: а)         предварительный, текущий и заключительный б)         оперативный, ретроспективный и перспективный в)         предварительный, последующий и итоговый 27. Информация, ...

Скачать
22670
1
4

... а также любые колебания, в которых прослеживается закономерность. В качестве примера можно назвать модель экспоненциального сглаживания Брауна. 3. Пример проведения прогнозирования прибыли с использованием пакета SPSS Постановка задачи: Необходимо построить модель, дающую возможность предсказывать размер прибыли некоторой торговой фирмы, если известны данные о ежемесячной прибыли за последние ...

0 комментариев


Наверх