1.5 Нефтехимия
Создание первых нефтехимических производств было связано с необходимостью найти применение побочным продуктам термического крекинга – этилену и пропилену. В 1920 г. компания «Стандарт Ойл» стала производить из пропилена первый нефтехимический продукт – растворитель изопропиловый спирт, а из этилена – 1,2-дихлорэтан, нашедший широкое применение как растворитель для химической чистки, и этиленгликоль (1,2-этандиол), который до сих пор используется как антифриз. В настоящее время потребность промышленности в алкенах настолько велика, что для получения этилена и пропена специально проводят крекинг фракций нефти при более высоких температурах (около 700 °С). Получают алкены и каталитическим дегидрированием.
Основная часть алкенов в настоящее время идет на производство полимеров. Большое количество этилена перерабатывается в винилхлорид, мономер синтеза поливинилхлорида. Из бутановой фракции перегонки нефти получают бутадиен, используемый для производства резины. Каталитическое окисление бутана в настоящее время является основным методом получения уксусной кислоты.
Фракции нефти, в состав молекул которых входит от 12 до 16 атомов углерода, подвергают каталитическому окислению. Например, из гексадекана С16Н34 можно получить спирт состава С16Н33ОН:
2С16Н34 + О22С16Н33ОН
Из образующихся высших спиртов получают поверхностно-активные алкилсульфаты, которые входят в состав многих синтетических моющих средств. Таким образом, стиральные порошки фактически делают из нефти.
Другими многотоннажными продуктами нефтехимии являются ароматические углеводороды – бензол, толуол, ксилолы, стирол. Арены применяются в качестве растворителей, а также в качестве исходных веществ в органическом синтезе. Из стирола получают один из самых распространенных в быту полимеров – полистирол.
Несколько слов о промышленной химической переработке природного газа. Реакция пиролиза метана – разложение без доступа воздуха при 1500 °С – источник не только водорода, но и сажи для резиновой отрасли промышленности. Пиролиз, проведенный в несколько измененных условиях (газ подвергается действию высоких температур в течение очень короткого времени), позволяет выделить промежуточные продукты разложения. Это основной метод получения ацетилена.
Процесс взаимодействия при высоких температурах углеводородов с водяным паром – конверсия – в зависимости от целей протекает в разных условиях. Если конверсию природного газа проводят для получения водорода, то используют избыток водяного пара:
2СH4 + O2 + 2H2O 2CO2 + 6H2.
Углекислый газ отделяют, растворяя его в воде под давлением.
Иногда реакцию конверсии проводят на катализаторе при недостатке водяного пара:
CH4 + H2O CO + 3H2.
Смесь оксида углерода(II) и водорода – синтез-газ – не разделяют, а используют для получения из нее разных органических веществ. В зависимости от условий (температура, давление, катализаторы) оксид углерода(II) и водород реагируют по-разному. Из синтез-газа получают целый спектр органических веществ, самым многотоннажным из которых является метанол.
В результате разнообразных химических процессов основные продукты нефтехимии превращаются в широкий ассортимент пластмасс, синтетических волокон, синтетических моющих средств, растворителей, красителей, лекарств и т.п. Часто эти процессы многостадийны и требуют значительных энергозатрат. Большинство промышленных химических реакций проводится в присутствии катализаторов.
Следует отметить, что в настоящее время на химическую переработку идет около 10% добываемой нефти. Все остальное используется как топливо. В связи с этим обычно приводят слова Менделеева: «Топить нефтью – топить ассигнациями». Менделееву приписывают не совсем то, что он имел в виду, – фраза, конечно, не имела отношения к важности развития нефтехимических производств. Эти слова сказаны в связи с сжиганием легкой бензиновой фракции. Но, к сожалению, по бережливости в обращении с углеводородным сырьем мы ушли не намного дальше. Достаточно вспомнить факелы попутных нефтяных газов в районах нефтедобычи и факелы над нефтеперерабатывающими заводами. Напрасно сжигая нефтепродукты, человечество приближает момент их исчерпания. По прогнозам, нефти в мире должно хватить на 40 лет, газа – на 60, запасы природного угля побольше, но тоже рано или поздно исчерпаются. Кроме того, сжигание углеводородного сырья приводит к печальным экологическим последствиям: от смога на улицах городов до увеличения концентрации углекислого газа в атмосфере Земли, которое, по мнению некоторых ученых, может привести к глобальному изменению климата на планете.
Глава 2. ТЕОРЕТИЧЕСКАЯ ПОДДЕРЖКА ТЕМЫ «ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ»
НЕФТЬ. КЕРОСИН. БЕНЗИН
Нефть – жидкое горючее ископаемое, добываемое из недр Земли. Нефть представляет собой нерастворимую в воде коричневую или черную маслянистую жидкость легче воды (плотность 0,75–0,95 г/мл). Она содержит 83–87% углерода и 11–14% водорода. Нефть состоит из углеводородов – алканов и циклоалканов. Состав ее зависит от месторождения: в одних преобладают алканы, в других – циклоалканы. Грозненская нефть состоит в основном из алканов, уральская – из циклических и нециклических углеводородов, бакинская – из циклических углеводородов:
Кроме углеводородов нефть содержит различные сернистые и азотистые соединения. Чем меньше этих примесей, тем выше качество нефти. В нефти обычно бывает растворен метан, значительные количества которого теряются при несовершенной технике нефтедобычи.
Д.И.Менделеев – один из первых, кто выдвинул теорию происхождения нефти (1876). Он считал, что нефть образовалась при действии воды на карбид железа Fe3С, который может входить в состав ядра земного шара.
В настоящее время эта теория оставлена и принято биохимическое происхождение нефти из останков простейших организмов, осевших на дно бывших морей. Эта теория подтверждается тем, что в нефти обнаружены продукты разложения хлорофилла.
Нефть – очень ценное химическое сырье, ее также можно использовать как топливо: 1 кг нефти при сжигании выделяет около 45 000 кДж теплоты. В настоящее время нефть в качестве топлива почти не используется, т. к. экономически более выгодно получать из нефти бензин и другие вещества после ее переработки.
При переработке нефти фракционированием (после предварительного удаления газов) выделяют следующие продукты:
а) Бензины, температура кипения которых – вплоть до 180 °С. Эта фракция содержит углеводороды с 5–9 атомами углерода. Повторным фракционированием из нее выделяют бензины для авиационных и автомобильных двигателей.
б) Керосины, температура кипения которых находится в пределах 180–300 °С. Эта фракция содержит углеводороды с 10–16 атомами углерода. Керосины подразделяются на осветительные, тракторные, реактивные.
в) Нефтяные остатки – мазут. Это смесь углеводородов с 17 углеродными атомами и выше. Из мазута при температуре 300 °С и выше отгоняют так называемые соляровое и трансформаторное масла, из него получают вазелин и чистый твердый парафин.
После перегонки нефти получается всего 10–20% бензина. Для увеличения количества получаемого бензина более высококипящие фракции подвергают нагреванию для разрушения больших молекул до молекул, входящих в состав бензина. Эту технологическую операцию называют крекингом. В частности, крекингом мазута при температуре 450–550 °С дополнительно получают бензин. Остаток после переработки мазута – гудрон – используют для покрытия дорог. В настоящее время крекинг проводят на катализаторах – платине или алюмосиликатах. (Напишите формулу простейшего алюмосиликата.)
Крекинг при еще более высоких температурах (700–800 °С) называют пиролизом.
Крекинг и пиролиз позволяют довести суммарный выход бензина из нефти до 85%.
Первый проект промышленной установки для крекинга был разработан в 1891 г. известным русским инженером В.Г.Шуховым.
При крекинге и пиролизе образуются не только более простые молекулы из-за разрыва тяжелых молекул; одновременно протекают многочисленные, часто еще неизвестные, реакции изомеризации и циклизации.
После крекинга бензин получается более высокого качества по сравнению с бензином после перегонки нефти.
Наверное, в вашей семье есть автомобиль, и скоро вы сядете за руль. Читайте внимательнее про бензин!
Работа двигателя внутреннего сгорания основана на использовании работы расширения реакции горения компонентов бензина с кислородом воздуха. Теплота реакции в этом процессе является побочным продуктом и удаляется из мотора системой охлаждения двигателя (радиатор).
В цилиндрах двигателей внутреннего сгорания цепная реакция горения углеводородов (после предварительного сжатия газовой смеси) инициируется электрической искрой. Чем сильнее сжата смесь перед вспышкой, тем больше развиваемая мотором мощность и тем относительно меньше расход бензина. Однако увеличение степени сжатия возможно только до некоторого предела, зависящего от прочности деталей двигателя и качества бензина.
При слишком высоком сжатии цепная реакция горения смеси может еще более ускориться и превратиться во взрывоподобную. Более того, реакция может начаться до достижения максимального сжатия в цилиндре и даже до появления электрической искры. Из-за этого слышится стук в двигателе и его мощность резко падает.
В камере сгорания происходит детонация, при которой бензин сгорает не полностью, образуется не углекислый газ, а монооксид углерода СО, угарный газ. В выхлопных газах увеличивается содержание оксидов азота и сажи. Автомобиль выбрасывает клубы дыма. Мотор дрожит и даже продолжает работать после выключения зажигания.
Допустимая степень сжатия до появления детонации характеризуется октановым числом топлива. Чем выше октановое число, тем на большую степень сжатия может быть рассчитан мотор и тем большую мощность он будет развивать.
Октановое число – условный показатель антидетонационных свойств моторного топлива (бензин, керосин). Моторное топливо сравнивается со смесью изооктана, октановое число которого условно принято за 100, и нормального гептана с октановым числом, равным 0. Процент изооктана в смеси, эквивалентной по детонационной стойкости испытываемому топливу, называется октановым числом топлива. Если октановое число равно 90, то это означает, что бензин детонирует, как и смесь, состоящая из 90% изооктана и 10% нормального гептана.
По этой шкале оценки качества бензина можно получить и смесь с октановым числом, большим 100. Например, смесь бензина (с октановым числом 100) с 10% изооктана будет иметь октановое число, равное 110.
Октановое число бензина повышается с возрастанием содержания в бензине углеводородов с молекулами разветвленного (изосоединения) и циклического строения. Например, октановое число нормального гексана равно 40, его изомеров: 1,1,1-триметилпропана – 80 и 2,3-диметилбутана – 120; циклогексана – 80 (октановое число бензола, который мы будем изучать в следующем году, равно 100).
Октановое число бензина после перегонки нефти не превышает 70. Для повышения качества низкосортных бензинов в них вводят различные добавки – антидетонаторы (до 0,3%). Наиболее распространенной добавкой является тетраэтилсвинец Рb(C2H5)4, добавление которого повышает октановое число бензина. При высокой температуре вспышки бензиновоздушной смеси тетраэтилсвинец распадается и образуется металлический свинец. Чтобы свинец не конденсировался на внутренних деталях мотора, в бензин добавляют раствор тетраэтилсвинца в бромистом этиле C2H5Вr. Образуется летучий бромид свинца, выбрасываемый в атмосферу.
Бензин с тетраэтилсвинцом называют этилированным, он крайне опасен для здоровья. При его попадании на кожу человека тетраэтилсвинец прекрасно впитывается, проникает внутрь организма и оседает в почках и мозговых тканях. Через несколько лет (даже десятков лет) у человека проявляются симптомы отравления – трясутся руки, затрудняется ходьба, ухудшается зрение и наступает слабоумие.
От тетраэтилсвинца страдают не только водители, но и все, кто дышит выхлопными газами, содержащими свинец.
Бромид свинца, попадающий в атмосферу, неустойчив и под действием света и кислорода воздуха осаждается в виде нелетучих соединений (оксиды свинца) вблизи автомобильных дорог. Овощи и фрукты, выращенные даже в 100 м от дороги, оказываются с повышенным содержанием свинца.
В цивилизованных странах введение в бензин каких-либо добавок, содержащих тяжелые элементы металлического характера, запрещено. В нашей стране пока такое запрещение распространяется только на крупные города.
Для того чтобы не вводить в бензин тетраэтилсвинец, необходимо так проводить крекинг нефти, чтобы получались смеси с возможно большим содержанием углеводородов типа изооктана. Для этого необходимо создание еще более специфически действующих катализаторов. Пока эта задача далека от желаемого решения.
Нефть может быть получена искусственно. Один из способов состоит в том, что мелкораздробленный каменный уголь нагревают с водородом (500 °С, 200 атм), при этом происходит реакция между углеродом и водородом (гидрирование) и образуются тяжелые углеводороды. Далее такая искусственная нефть подвергается той же обработке, что и природная.
Топливо, не уступающее по качеству бензину из нефти, в настоящее время получают следующим образом. При пропускании водяного пара через раскаленный углерод – кокс – образуется смесь двух газов, называемая водяным газом:
С + Н2О = СО + Н2.
Далее водяной газ пропускают через слой катализатора (железо, кобальт, никель, температура 200–300 °С) и получают смесь углеводородов, к сожалению, преимущественно нормального строения. Все многообразие реакций этого процесса можно выразить двумя схемами:
СО + Н2 смесь углеводородов + Н2О,
СО + Н2 смесь углеводородов + CO2.
В природе встречаются вещества, близкие по составу нефти. Например, горный воск, или озокерит, состоящий из твердых углеводородов. Это вещество используется для изготовления различных мастик, изоляционных материалов и т. п.
Другое вещество со знакомым вам названием – асфальт – используется в тех же целях, что и озокерит, но основная его масса в смеси с щебенкой и песком применяется в строительстве дорог. В настоящее время в качестве асфальта используют самые тяжелые остатки переработки нефти, из которых ничего более полезного извлечь не удается. Врачи и экологи неоднократно обсуждали вопрос о влиянии испарений асфальта и его пыли, образующейся при движении автомашин, на здоровье человека. Попадая с воздухом в легкие человека, пары и асфальтовая пыль могут вызвать раковое заболевание легких.
Глава 3. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ПО ТЕМЕ «ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ»
Природные источники углеводородов Интегрированный урок по географии и химии
Цели. Обобщить и систематизировать знания, активизировать познавательную деятельность учащихся, показать межпредметную связь химии и географии. Оборудование. Карта «Полезные ископаемые», коллекция горных пород и минералов, плакат «Угольное дерево», раздаточный материал (карточки по определению стран, добывающих нефть).
ПЛАН УРОКА
- Организационный момент (постановка цели урока).
- Каменный уголь (учитель географии).
- Нефть: происхождение, пути переработки (учитель химии).
- Основные месторождения каменного угля и нефти (учитель географии).
- Вопросы экологии (учитель химии).
- Интересные сведения о природных источниках углеводородов (учителя химии и географии).
- Викторина. Заключение.
По ходу урока проводится фронтальная работа с классом.
ХОД УРОКА
Организационный моментУчитель химии. В начале урока я прочитаю вам четверостишие М.В.Ломоносова, которое стало эпиграфом урока:
«В земное недро ты, химия, Проникни взора остротой, И, что содержит в нем Россия, Драги сокровища открой».
Много богатств находится в недрах России. Двум из них посвящен урок. Это нефть и каменный уголь, с которыми вы познакомились на уроках природоведения, продолжили изучение на уроках химии и географии. Основная цель урока – обобщить ранее изученный материал, акцентировать ваше внимание на наиболее интересных фактах.
Каменный угольУчитель географии (показывает карточки и задает вопросы).
1. Какой из природных источников углеводородов получил название «солнечный камень»?
(Каменный уголь. Различают бурый и каменный угли, антрацит.)
2. Какие полезные ископаемые скрываются за следующими словами:
а) коричневый уголь (торф);
б) зеленый уголь (сланцы);
в) черное золото (нефть)?
Ученые-геологи называют полезные ископаемые органического происхождения каустобиолитами.
Особое место среди них в жизни человека занимают уголь и нефть. Каково происхождение каменного угля? Чистый углерод в природе встречается редко, главным образом в виде минералов – алмаза и графита, а также в пластах каменного угля. Огромные запасы каменного угля в земной коре созданы жизнедеятельностью растений, которые в процессе фотосинтеза накапливают углерод. Если растение после гибели разлагается без доступа воздуха (под водой, под землей), то часть углерода превращается в газообразные соединения. Оставшийся углерод накапливается в свободном твердом состоянии и образует пласты ископаемого угля, покрытые толщами глины и песка. В зависимости от природных условий образуются различные виды угля (демонстрация и пояснения).
Каменный уголь – плотный минерал черного цвета, то матовый, то блестящий. Содержание углерода – 82%. Температура возгорания более 300 °С. Бурый уголь – плотное, твердое вещество бурого цвета, в нем можно различить волокна древесины, из которой он произошел. Содержание углерода – 70%. Температура возгорания до 70 °С.
Антрацит – очень плотный минерал черного цвета, блестящий. Содержание углерода – 95%. Температура возгорания – 500 °С.
Торф не имеет плотной структуры, содержание углерода – 58%. Его происхождение доказал еще Ломоносов: «Торф, когда сгорит, оставляет пепел и дает из него поташ, как и другие растения. Он, конечно, не из минерального царства. Химические опыты показывают перегонкой из чистого торфа те же произведения, как происходят из растений».
Интересно описан процесс образования каменного угля в недрах земли в стихотворении Веры Инбер:
«В лугах и громах над остывшей |
землей |
Потопом свергались дожди. |
сквозь мох, |
Коленчато-перистый куст. |
ослепительный свет, |
Который на каменноугольный лес |
глубин, |
Сжимались в куски янтаря. |
тепле, |
Они в непроглядной тиши |
веков, |
И каменный уголь рождался в земле, |
После прочтения стихотворения задаются вопросы.
Учитель географии. 1. Назовите эру, в которой произошло наиболее значительное образование залежей каменного угля. (Карбон, палеозой.)
2. Каков климат этой эры? (Теплый, влажный.)
3. Назовите растения, которые послужили основой для образования угля. (Хвощи, плаунообразные.)
4. Назовите период мезозойской эры, когда происходило образование и накопление торфа, горючих сланцев, угля. (Меловой.)
Вывод. В геологической истории Земли были периоды интенсивного образования и накопления полезных ископаемых.
Нефть: происхождение, пути переработкиУчитель химии.
«Черная нефть струится, |
Нефть – это один из самых главных природных источников углеводородов. С ней человек познакомился давно. Сведения о нефти дошли до нас с Ближнего Востока. Археологические раскопки свидетельствуют о том, что в долине реки Евфрат нефть добывали и перерабатывали восемь тысячелетий назад. Битумом покрывали дно бассейнов, применяли его для предохранения от гниения деревянных балок. Асфальтом бальзамировали мумии. Нефть применялась в медицине для заживления ран, язв и лечения глазных болезней. С прорывом нефтяных фонтанов связывают гибель Содома и Гоморры. Существует легенда о том, что во время установления палатки Александра Македонского на берегу Аму-Дарьи был обнаружен источник нефти. Это было великое предзнаменование, которое положило конец колебаниям полководца, и армия направилась на покорение Индии. В истории известен греческий огонь – это смесь нефти и селитры. Она использовалась для огнеметов.
В России нефть стали добывать и использовать в ХVIII в. Первый завод по ее переработке был построен в 1745 г. на реке Ухте. Главным продуктом являлся керосин.
Открытым остается вопрос о происхождении нефти. Существуют две гипотезы.
Первая гипотеза – органическая (происхождение нефти из растительных и животных остатков). Процесс их превращения в нефть протекает на глубине 2,5–6 км при температуре 160 °С без доступа воздуха под высоким давлением.
Вторая гипотеза – неорганическая. Приверженцем этой гипотезы был Д.И.Менделеев. Он считал, что в недрах земли под действием температуры из углерода и водорода образуются нефтяные углеводороды, которые накапливаются в подземных ловушках.
Нефть – это смесь различных углеводородов. Состав нефти зависит от месторождения: бакинская нефть богата циклопарафинами, ферганская – предельными углеводородами, пермская – ароматическими углеводородами. Нефть – ценное химическое сырье.
Вопросы и задания учащимся1. Какие известны пути переработки нефти?
2. На чем основана простая перегонка? Какие продукты можно получить при перегонке? Где они применяются? В чем недостаток процесса простой перегонки? Что такое крекинг?
3. Какие бывают виды крекинга? Каковы преимущества и недостатки данного способа переработки нефти?
4. Как практически отличить крекинг-бензин от бензина простой перегонки?
Задача. Определить объем бутана, образующегося в процессе каталитического крекинга октана массой 57 г, если выход бутана составляет 70% от теоретически возможного. Учитель географии. Каменные угли и нефть встречаются не повсеместно, а сосредоточены в отдельных районах земного шара, где имелись благоприятные условия для их образования. Крупнейшие каменноугольные бассейны относятся к осадочному чехлу платформ и расположены в северном полушарии, на материках Америки и Евразии. Задания учащимся
1. Назовите страны, где расположены перечисленные ниже бассейны:
Рурский – ………..........…... (Германия), Донбасс – ……......... (Украина, Россия), Саарский – …..….....…...…. (Германия), Силезский – ….......……...….. (Польша), Ленский – …..…….……...……. (Россия), Аппалачский – ….......…....…..… (США), Кузбасс – …..………......…….. (Россия), Канско-Ачинский ...…............. (Россия). |
... учебного процесса; 4) Абсолютно неудовлетворительная объективность оценки знаний обучающихся, невозможность сопоставления оценок, полученных или разных обучающих или, тем более, в разных учебных заведениях [10]. 1.8 Тестовый контроль знаний на уроках химии В последние годы в связи с проведением в стране эксперимента по внедрению единого государственного экзамена (ЕГЭ) тестовые задания все ...
... ведущими являются понятия «вещество» и «химическая реакция». Именно этим понятиям принадлежит решающая роль при построении содержания различных курсов химии. Схема 2. Взаимосвязь систем важнейших химических понятий в курсе химии средней школы Отбор необходимых фактов для изучения химии превращается в сложную проблему. Постоянное стремление уменьшить описательный материал в курсе химии в ...
... деятельность. Поиск методов и форм обучения, способствующих воспитанию творческой личности, привел к появлению некоторых специфических способов обучения, одним из которых являются игровые методы. Реализация игровых методов обучения при изучении химии в условиях соблюдения дидактических и психолого-педагогических особенностей, повышает уровень подготовки учащихся. Слово «игра» в русском языке ...
... необходимостью творческого использования имеющихся у них знаний и приобретения недостающей информации) [10,11]. ГЛАВА III. УРОК «ПРАКТИКУМ ПО РЕШЕНИЮ ЗАДАЧ КУРСА ОРГАНИЧЕСКОЙ ХИМИИ С ЭКОЛОГИЧЕСКИМ СОДЕРЖАНИЕМ» Цель. Описывать и объяснять задачи с экологическим содержанием. Оптимальное использование в учебном процессе таких задач позволяет приблизить теоретический материал к жизни, сделать его ...
0 комментариев