4. Расчет расходов теплоносителя в тепловых сетях
Определим расход воды на отопление Go. max (кг/с) по формуле:
Go. max= Qo.p./c×(τ1–τ2) , т/ч, [1] cтр. 15 (13)
Go. max=1983,74/ 4,19 (120 - 70)=9,5 т/ч.
где Qo.p. − расчетная тепловая нагрузка отопления, ккал/ч;
с – удельная теплоемкость воды; с=1 ккал/(кг·°С);
Найдем расход воды на вентиляцию Gв. max (кг/с) по формуле:
Gв. max= Qв.p. /c×(τ1–τ2) , т/ч, [1] cтр. 15(14) |
где Qв.p. − расчетная тепловая нагрузка вентиляции, ккал/ч;
Gв. max= 62,6/ 4,19 (120 - 70) = 0,3 т/ч.
В закрытых системах теплоснабжения средний расход сетевой воды Gг.ср. (кг/с) при двухступенчатой схеме присоединения водоподогревателей найдем по формуле:
Gг.ср. = Qг.сp. )/c×(τ'1–τ'2) ×(55−t')/(55−tх.з.)+0,2, т/ч, [1] cтр. 15 (15) |
где τ'2 − температура воды в обратном трубопроводе тепловой сети после системы отопления в точке излома температурного графика, °С;
t' – температура воды после первой ступени подогрева при двухступенчатых схемах присоединения подогревателей, °С;
Gг.ср. =239,88/ 4,19(70 – 58,3)× (55-48,3/55-5 +0,2)=1,61 т/ч.
Максимальный расход Gг.mах. (кг/с) определим по формуле:
Gг.mах. = 0,55×Qг.max./с×(τ'1–τ'2), т/ч, [1] cтр. 15 (16) |
где τ'1 – температура воды в подающем трубопроводе тепловой сети после системы отопления в точке излома температурного графика, °С;
τ'2 – температура воды в обратном трубопроводе тепловой сети после системы отопления в точке излома температурного графика, °С.
Gг.mах. =0,55×575,7 /4,19×(70-58,3)=6,46 т/ч.
Суммарный расчетный расход сетевой воды
В двухтрубных тепловых сетях в открытых и закрытых системах теплоснабжения при качественном регулировании отпуска теплоты суммарные расчетные расходы сетевой воды Gd (кг/с) следует определять по формуле:
Gd = Gо.mах+Gв.mах+Gг.max, т/ч, [1] cтр. 17 (17) |
Gd =9,5 + 1,2+1,51=11,4 т/ч.
5. Гидравлический расчет тепловых сетей
Проектирование тепловых сетей начинается с выбора трассы и способа их прокладки. Проектирование трасс магистральных тепловых сетей должно увязываться с условиями как существующей застройки города, так и перспективами его дальнейшего развития.
Для проектирования тепловых сетей необходимы исходные данные: топографические условия местности, характер планировки и застройки городских районов, размещение наземных и подземных инженерных сооружений и коммуникаций, характеристика свойств грунтов и глубина их залегания, режим и физико-химические свойства подземных вод и другие
Трасса тепломагистрали, наносимая на топографический план, выбирается по кратчайшему направлению между начальной и конечной ее точками с учетом прохода труднопроходимых территорий и различных препятствий. Трасса тепловых сетей в городах и других населенных пунктах должна предусматриваться в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений, а внутри микрорайонов и кварталов – вне проезжей части дорог. При выборе трассы теплопроводов необходимо учитывать экономичность и надежность тепловых сетей. Наиболее экономичной является тупиковая схема.
С целью повышения надежности работы тепловых сетей целесообразно устраивать блокировочные перемычки, которые рассчитываются на пропуск аварийного расхода воды, принимаемого равным 70 – 75 % от расчетного. При диаметре магистралей до 500 мм перемычки можно не устраивать.
Пересечение тепловыми сетями естественных препятствий и инженерных коммуникаций должно выполнятся под углом 90º, а при обосновании – под меньшим углом, но не менее 45º.
При выборе трассы предусматривается один ввод тепловых сетей в каждый квартал. В местах ответвлений к кварталам или зданиям предусматривают тепловую камеру. Подключать рядом расположенные кварталы целесообразно из одной тепловой камеры.
За расчетную магистраль принимаем наиболее напряженное и нагруженное направление на трассе тепловой сети, соединяющее источник теплоты с дальним потребителем. В проекте за магистраль принимаем направление от источника до микрорайона IV, т. е. участки: 1 (о – а), 2 (а – б), 3 (б – в), 4 (в – микрорайон IV).
Таблица 5.1- Расход сетевой воды на участке тепловой сети
№ участка | Расход теплоносителя (сетевой воды) | |||
Цифровое обозначение | Буквенное обозначение | формула | G, кг/с | G×3,6 т/ч |
1 | о – а | G=или G= | 100,41 | 361,48 |
2 | а – б | G=G–Gили G=G+G | 82,31 | 296,32 |
3 | б – в | G=G–Gили G=G+G | 39,32 | 141,55 |
4 | в – микрорайон IV | G=G | 24,61 | 88,6 |
5 | а – микрорайон I | G=G | 18,1 | 65,16 |
6 | б – микрорайон II | G=G | 42,99 | 154,76 |
7 | в – микрорайон III | G=G | 14,71 | 52,96 |
Предварительный гидравлический расчет тепловой сети
Гидравлический расчет один из важнейших разделов проектирования в эксплуатации тепловой сети.
При проектировании в задачу гидравлического расчета входит:
– определение диаметров трубопроводов;
– определение падения давления (напора);
– определение давлений (напоров) в различных точках сети;
– увязка всех точек системы при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.
Независимо от результатов расчета наименьшие диаметры труб принимают: для распределительных трубопроводов – не менее 50 мм, для ответвлений к отдельным зданиям – не менее 25 мм.
Удельные потери на трение R (h) на трубопроводах принимаем:
– для участков расчетной магистрали от источника тепла до наиболее удаленного потребителя до 80 Па/м;
– для ответвления от расчетной магистрали – по располагаемому давлению, но не более 300 Па/м.
При определении диаметра труб принимаем значения коэффициента эквивалентной шероховатости =0,5 мм и скорость движения теплоносителя не более 3,5 м/с.
По приложению 1 ,[1] выбираем наружный диаметр (d×s) трубопровода для каждого участка тепловой сети, скорость движения теплоносителя () и удельные потери давления R(h). Выбранные значения заносим в таблицу 2.2 По приложению 20, [1] подбираем соответствующие данные (d×s), условный (d) и внутренний (d)диаметры трубопроводов.
Таблица 5.2 -Расчетные данные для гидравлического расчета трубопроводов
№ участка | Расход теплоносителя G, т/ч | Диаметры трубопроводов | Скорость движения теплоносителя , м/с | Удельные потери давления на трение | ||||
наружный d×s, мм | Услов-ный d, мм | Внутренний d,мм | h, кгс/(м²×м) | R=h×9,81, Па/м | ||||
1 | о – а | 361,48 | 325×8 | 300 | 309 | 1,39 | 6,78 | 66,5 |
2 | а – б | 296,32 | 325×8 | 300 | 309 | 1,12 | 4,4 | 43,2 |
3 | б – в | 141,55 | 325×8 | 300 | 309 | 0,54 | 1,03 | 10,1 |
4 | в – микрорайон IV | 88,6 | 194×6 | 175 | 184 | 0,1 | 6,89 | 67,6 |
5 | а – м икрорайон I | 65,16 | 194×6 | 175 | 184 | 0,74 | 3,7 | 36,3 |
6 | б – микрорайон II | 154,76 | 194×6 | 175 | 184 | 1,73 | 20,74 | 203,5 |
7 | в – микрорайон III | 52,96 | 194×6 | 175 | 184 | 0,6 | 0,48 | 4,7 |
Для обеспечения надежной работы тепловой сети определяем место установки неподвижных опор, компенсаторов и запорной арматуры.
Неподвижные опоры фиксируют отдельные точки трубопровода, делят его на независимые в отношении температурных удлинений участки и воспринимают усилия, возникающие в трубопроводах при различных схемах и способах компенсации тепловых удлинений. Расстояние между неподвижными опорами зависит от диаметров трубопровода, способа прокладки тепловых сетей, типа компенсатора, параметров теплоносителя. Расстояние между неподвижными опорами принимаем по таблице 3.3 [1] .
Тепловые удлинения трубопроводов при температуре теплоносителя от 50º С и выше должны восприниматься специальными компенсирующими устройствами, предохраняющими трубопровод от возникновения недопустимых деформаций и напряжений. В качестве компенсирующего устройства принимаем сальниковые и П-образные компенсаторы.
Таблица 5.3 - Проектные расстояния между неподвижными опорами, тип компенсатора и их количество
№ участка | Длина участка l, м | Диаметр наружный d, мм | Диаметр условный d, мм | Тип компенсатора | Макс–е расстояние между не подвижными опорами l | Количество компенсаторов | Проектное расстояние между неподвижными опорами на участке тепловой сети | |
П-образные | сальниковые | |||||||
1 | 310 | 325 | 300 | С | 100 | – | 4 | |
2 | 320 | 325 | 300 | С | 100 | – | 4 | |
3 | 320 | 325 | 300 | С | 100 | – | 4 | |
4 | 125 | 194 | 175 | П | 100 | 2 | – | |
5 | 240 | 194 | 175 | П | 100 | 3 | – | |
160 | 194 | 175 | П | 100 | 2 | – | ||
7 | 170 | 194 | 175 | П | 100 | 2 | – |
Проверочный расчет магистрали и ответвлений
Режим движения теплоносителя
Для определения режима движения необходимо сравнить значения критерия Рейнольдса Re с его предельным значением Re:
Re= 4G×10³/, [1] стр39 (18)
где G – расход теплоносителя, кг/с; берем из таблицы 2.1;
d – внутренний диаметр трубопровода, мм, таблица 2.2;
– средняя плотность теплоносителя на рассчитываемом участке тепловой сети, кг/м³; выбирается по приложению 12 [1];
– кинематическая вязкость, м²/с; по приложению 12 [1].
Re=4×100,41×10³/ 3,14×309×958,38×0,296×10=1459215,32
Re= 568×d/ к [1] стр. 39 (19)
где К– эквивалентная шероховатость, мм; принимаем К= 0,5 мм.
Re=568×309 /0,5=31024
Коэффициент гидравлического трения:
– для области квадратичного закона:
= 1/ (1,14+2×lg×( d/ к))² [1] стр. 40 (20)
= 1/ (1,14+2*×lg×(309/0,5))² = 0,022
Сумма коэффициентов местных сопротивлений на рассчитываемом участке тепловой сети:
n+n+n+n [1] стр40 (21)
где n–количество задвижек;
n – количество поворотов;
n– количество компенсаторов;
n – количество разветвлений;
– коэффициенты местных сопротивлений принимаем по приложению 16 [1].
=2×0,5+0×1+4×0,3+1×1,5=3,7.
Эквивалентная длина местных сопротивлений
= (d×10/)× м, [1] стр41 (22)
где d – внутренний диаметр(таблица 2.2),мм
– коэффициент гидравлического трения (формула 2.3)
– сумма коэффициентов местных сопротивлений участка тепловой сети;
=( 309×0,001/0,022) ×3,7= 51,99 м.
Приведенная длина трубопроводов:
=+м, [1] стр41 (23)
где – длина участка тепловой сети, м; значение берем из таблицы 2.4
=310+51,99 =361,99 м.
Потери давления на трубопроводах на трение и в местных сопротивлениях:
ΔP= R, Па, [1] стр41 (24)
где R – удельные потери давления на трение, Па/м
ΔP=66,5×361,99 =24072,34 Па.
Действительное падение напора для воды
ΔH= ΔP/g, м, [1] стр41 (25)
где – средняя плотность воды, кг/м³;
g – ускорение свободного падения, принимаем g=9,81 м/с².
ΔH=24072,34/958,38×9,81 = 2,56 м.
Располагаемый напор в начале магистрального участка тепловой сети:
Н = Н+2ΔH, м [1] стр41 (26)
где Н – располагаемый напор в конце магистрального участка, м;
ΔH – потери напора на участке магистрали, м.
Н = 15+2×1,25=17,5 м.
Располагаемый напор у абонентов в каждом микрорайоне:
Н= Н – 2ΔH, [1] стр41 (27)
где Н – располагаемый напор в начале магистрального участка, м;
Потери напора от источника теплоснабжения до узловых точек магистрали и до абонента:
ΔH= ΔH, [1] стр43 (28)
ΔH=2,56 ,
ΔH= ΔH+ ΔH, [1] стр43 (29)
ΔH= 2,56+1,71= 4,69 ,
ΔH= ΔH+ ΔH, [1] стр43 (30)
ΔH=4,27+0,42=4,69 ,
ΔH= ΔH+ΔH, [1] стр43 (31)
ΔH=4,69+1,25=5,94 ,
ΔH=Δ Н1= ΔH+ΔH, [1] стр43 (32)
ΔH=2,6+1,18= 3,74 ,
ΔH= Δ Н11= ΔH+ ΔH, [1] стр43 (33)
ΔH=4,27+4,52= 8,79 ,
ΔH= Δ Н111= ΔH+ ΔH, [1] стр43 (34)
ΔH=4,69+0,11 =4,8 .
Напор сетевого насоса:
Н= НIV++, м, [1] стр43 (35)
где – потери напора на источнике теплоснабжения, принимаем равным 20 м.
=2 ΔH+2 ΔH+2 ΔH+2 ΔH=2 ΔH, [1] стр43 (36)
=2×2,56+2×1,71+2×0,42+2×1,25 =11,88
Н=15+11,88+20=46,9 м.
... управления муниципальным водоснабжением, необходимо проведение ряда мероприятий, способствующих развитию рассматриваемой сферы. 3 Пути совершенствования управления муниципальным водоснабжением 3.1 Зарубежный опыт решения проблем муниципального водоснабжения Современная система водоснабжения как составляющая часть инженерной инфраструктуры имеет огромное значение для жизни городов. ...
... соответствующими правовыми актами органов местного самоуправления ЗАТО в сроки представлению в администрацию ЗАТО Видяево отчетность о финансово-хозяйственной деятельности ЖКХ. За ненадлежащее исполнение обязанностей и искажение отчетности должностные лица предприятия несут ответственность, установленную законодательством Российской Федерации; - формирование резервного фонда в размере не менее ...
... , надежность в партнерстве, прозрачность деловых отношений и соответствие международным стандартам. Будущее предприятия основано на: – устойчивом росте выпуска котлов; – активном формировании рынка водогрейного оборудования; – укреплении лидирующих позиций в отрасли за счет эффективного использования имеющихся производственных мощностей, научного потенциала и новых разработок. – ...
... назначаемым из центра воеводам, принявшим на себя административные, полицейские и военные функции. Воеводы опирались на специально созданный аппарат (приказная изба) из дьяков, приставов и приказчиков. 2. Территориальная организация власти в России в XVIII-XIX вв. 2.1. Формирование системы власти в XVIII в. К концу XVII в. в России начинает складываться абсолютная мо ...
0 комментариев