3.3 Вибір джерела живлення
Живлення всіх елементів має бути стабільним, щоб уникнути збоїв у роботі системи. Для забезпечення високої стабільності використаємо джерело опорної напруги. Найкращими джерелами, які випускаються в теперішній час є: REF-02, AD586, МС780, LM113, TL431. Одним з найкращих джерел опорної напруги є мікросхема МС780. Схема підключення опорного джерела живлення МС780 показана на рисунку 3.4.
Рисунок 3.4 – Схема включення джерела живлення
Джерело опорної напруги МС780 має такі технічні характеристики:
- відхилення напруги від опорного значення: ± 0,02 В;
- струм споживання 2 μА;
- діапазон струму навантаження: від 0 до 10 mА;
- температурний коефіцієнт вихідної напруги: 10-5ºС .
Для того щоб вхідний сигнал якомога менше спотворити, при його проходженні через резистори, які будемо використовуватися для ділення напруги та схем включення мікроелементів – будуть прецензійними .
3.4 Вибір датчика температури KTY81-121
Вибір датчика температури проведемо за наступним властивостями, даний датчик мати похибку не більше 2%, а також працювати в діапазоні від
-50 до 150.
Даним критеріям підходить датчик KTY81-121 рисунок 3.5 фірми NXP Semiconductors.
Рисунок 3.5 – Датчик KTY81-121
Це температурний датчик термістор - напівпровідниковий резистор, електричний опір якого істотно зменшується або зростає зі зростанням температури. Для терморезистора характерні великий температурний коефіцієнт опору (ТКС) (в десятки разів перевищує цей коефіцієнт у металів), простота пристрою, здатність працювати в різних кліматичних умовах при значних механічних навантаженнях, стабільність характеристик у часі. Терморезистор виготовляють у вигляді стержнів, трубок, дисків, шайб, намистин і тонких пластинок переважно методами порошкової металургії, їх розміри можуть варіюватися в межах від 1-10 мкм до 1-2 см. Основними параметрами терморезистора є номінальна опір, температурний коефіцієнт опору, інтервал робочих температур, максимально допустима потужність розсіювання.
Основні параметри датчика:
- опір при 25 ° C: 1000 Ω ± 2% (Ic = 1 мА)
- температурний коефіцієнт: 0.75% / K тип
- максимальний струм: 10 мА при 25 ° C, 2 мА при 150 ° C
- постійна часу: 30 сек на нерухомому повітрі: 5 сек в спокійній рідини,
2 сек в поточній рідини
- корпус: SOD-70
4. Електричні розрахунки компонентів системи вимірювання температури
До портів мікроконтролера ХТAL1 та ХТAL2 під’єднано конденсатори та , між якими розташований кварцовий резонатор ZQ, призначений для того, щоб задавати такт роботи мікроконтролера. Його частота f=1 МГц.
(4.1)
Візьмемо пФ.
Схема інтерфейсу RS 485 зображена на рисунку 3.3. Для того щоб забезпечити подавлення високочастотних завад живлення кожної мікросхеми, безпосередньо близько до її корпусу шунтуються керамічні конденсатори, а саме С7, С10, С8 ємність яких не перевищує 0,1 мкФ . Звідси випливає, що ємність конденсаторів С7=С10=С8=0,1 мкФ. Для подавлення низькочастотних завад і пульсацій використовуємо електролітичні конденсатори С6 ємність, якого також не повинна перевищувати 0,1 мкФ. Отже С6=0,1 мкФ
Конденсатори С13, С14, С15, С16 призначені для забезпечення функціонування мікросхеми МАХ 232. Згідно з документацією цієї мікросхеми ємність конденсаторів С13= С14 =С15=С16=0,1 мкФ.
З документації на мікросхему MC7805 визначаємо номінали конденсаторів С8 – С9. та С17 – С18 Отже, обираємо конденсатори С8= С9=0,1 мкФ, С17= С18= 10 мкФ.
Для забезпечення стабілізації п’яти-вольтового живлення для мікросхем DD5, DD6 використовуємо діоди VD1 та VD2 - діоди напівпровідникові імпульсні 1N4148, які мають такі характеристики:
- постійна зворотна напруга, UR - 75 В;
- імпульсна зворотна напруга, URM - 100 В;
- температура збереження, Тзб- від –65 до +200°C ;
- робоча температура навколишнього середовища - від –65 до +150°C;
- пряма напруга, UF1 – 0,1 В;
- зворотний струм, IR1 - 5 мкА;
- зворотний струм, IR2 – 0,025 мкА;
- зворотна пробивна напруга, UBR – 100 В.
5. Розрахунок похибки вимірювання системи температури
Розрахуємо похибку квантування АЦП. Розрахунок проведемо за такою формулою:
(5.1)
де n- розрядність АЦП n=12;
- напруга АЦП; = 10 (В).
Підставивши значення, отримаємо:
.
Розрахунок СКВ похибки квантування за такою формулою
. (5.2)
Отримаємо:
Розрахуємо похибку, яка буде виникати за рахунок не досконалості датчика.
Розрахунок СКВ похибки датчика за такою формулою:
. (5.3)
Підставивши значення, отримаємо:
Розрахуємо загальне СКВ похибки датчиків за такою формулою:
. (5.4)
Підставивши значення, отримаємо:
Висновки
В даному курсовому проекті була розроблена інформаційно-вимірювальна система визначення температури. В першому розділі ми розглянули можливі методи та засоби вимірювання температури. В другому розділі ми розробляли структурні схеми систем для визначення температури та з них обрали найкращу схему яка по критеріях якості була найбільш оптимальною для розробки інформаційно - вимірювальної системи температури. В третьому розділі ми розробили електричну принципову схему, де підібрали мікроконтролер фірми Texas Instruments, MSP430F149, інтерфейс зв’язку між вимірювальною системою і персональним комп’ютером – RS-485, обрали джерело живлення MC7805 та первинний вимірювальний датчик KTY81-121 фірми NXP Semiconductors.
В четвертому розділі ми зробили розрахунки основних вузлів системи для визначення температури. В п’ятому розділі розрахували основну похибки, а саме похибку первинного вимірювального перетворювача –датчика KTY81-121.
Загалом розроблена нами система є життєздатною та досить дієвою при стандартних умовах.
Перелік посилань
1. Антропогенные проблемы экологии: Методическое пособие. – К.: Вища школа, 1997. – 144 с.
2. Аксенов И.Я., Аксенов В.И. Транспорт и охрана окружающей среды. – М.: Транспорт, 1986. – 176 с.
3. Желібо Е.П., Заверуха Н.М., Зацарнкий В.В. “Безпека життєдіяльності”. – Вінниця: ВНТУ, 2004. – 185 с.
4. Клименко Л.П. Техноекологія – О: Таврія, 2000. – 542 с.
5. Бреслер П.І. Оптичні абсорбційні газоаналізатори і їх використання.– Л.: Енергія, 1980. - 164с.
6. ДСТУ 4277 – 2004: Норми і методи вимірювань вмісту оксиду вуглицю та вуглеводнів у відпрацьованих газах автомобілів з двигунами, що працюють на бензині або газовому паливі.
7. Ю.Ф. Гутаревич, Д.В. Зеркалов, А.Г. Говорун, А.О. Корпач, Л.П. Мержиєвська Екологія автомобільного транспорту: Навч. Посібник – К.: Основа, 2002. – 312с.
8. Проектирование микропроцесорных измерительных приборов и систем/В.Д. Циделко, Н.В. Нагаец, Ю.В. Хохлов и др.- К.: Техніка, 1984.-215с.
7. http://www.ti.com/
... дипломного проекту. Рисунок 3.1 – Схема електрична структурна пристрою контролю середнього значення кутової швидкості 4. Розробка принципової схеми комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом 4.1 Аналіз лінійного фотоприймача Фотоелектричні перетворювачі площа-напруга (ППН) використовуються у багатьох пристроях, таких як перетворювач ...
... виході мікроконтролера в рівні RS-232 використовується відповідний перетворювач, як це наведено на структурній схемі. 3. Розробка електричної принципової схеми комп’ютерного засобу вимірювання тиску і температури у кліматичній камері Електрична принципова схема розробленого пристрою наведена у графічній частині курсового проекту. Пристрій розрахований на підключення двох перетворювачів, але ...
... і. Недоліки: розрахована на навчання робочих ручним і машино-ручним професіям безпосередньо в учбових умовах 1.3.4 Побудова сводно–тематичного плану професійної підготовки робочого за фахом: «Слюсар по контрольно-вимірювальним приладам і автоматиці» Сводно-тематичний план - це документ, який включає тематику спеціальних дисциплін, регламентує послідовність вивчення тем і кількість годин, ...
... ./ “_____”_________2009р. Виконавець Студент групи x /xxxxxx./ “_____”____________2009р. Харків 2009 ЗАТВЕРДЖЕНО xxx.03077-01 12 01-1-ЛЗ ВІРТУАЛЬНИЙ ВИМІРЮВАЛЬНИЙ КОМПЛЕКС НА БАЗІ УЧБОВОГО ЛАБОРАТОРНОГО СТЕНДУ EV8031 Текст програми xxxxx.03077-01 12 01-1 Аркушів _48_ Харків 2009 ЗМІСТ 1 ТЕКСТ ПРОГРАМНОГО ЗАБЕСПЕЧЕННЯ ...
0 комментариев