3.2.3 Регулювання швидкості обертання зміни, підведеної до двигуна напруги
Напругу на затискачах двигуна регулюють зміною напруги генератора, що живить двигун. У цьому разі обмотка збудження двигуна живиться від окремого джерела (незалежне збудження).
Регулювання швидкості обертання двигуна з послідовним збудженням.
Швидкість обертання двигунів з послідовним і паралельним збудженням визначають за формулою:
.
Швидкість обертання двигуна послідовного збудження можна регулювати трьома способами: змінами опору кола якоря; магнітного потоку Ф статора; напруги U, підведеної до двигуна.
Регулювання швидкості обертання двигуна зміною опору кола якоря. Регулювання двигуна таким способом аналогічне регулюванню двигуна з паралельним збудженням. Здійснюється таке регулювання реостатом .
3.2.4 Регулювання швидкості обертання двигуна зміною магнітного потоку ФМагнітний потік в обмотці збудження двигуна змінюють шунтуючим реостатом . Якщо двигун має сталий гальмівний момент, незалежний від швидкості обертання, то при вимкненому рубильнику Р струм збудження дорівнюватиме струму якоря . При цьому обертальний електромагнітний момент визначиться за формулою: , а рівняння електричної рівноваги буде (пусковий реостат повністю виведений). Оскільки спад напруги дуже малий, то, нехтуючи ним, матимемо . Отже, при сталій напрузі на затискачах двигуна швидкість обертання n і магнітний потік Ф залежать один від одного. Якщо ввімкнено рубильник Р1, то струм в обмотці якоря збільшується, внаслідок чого обертальний момент стане більшим, ніж гальмівний, і швидкість обертання двигуна збільшуватиметься.
Рис. 3.2.4.1. Схема реверсування двигуна постійного струму з паралельним збудженням
Процес зміни швидкості обяртання найбільш економічний і дає можливість плавно регулювати обертання двигуна.
Напрям дії обертального моменту двигуна можна змінити напрямом струму якоря І1, або змінити напрям струму збудження. Схему реверсування двигуна з паралельним збудженням показано на схемі 3.2.4.1. Напрям струму в обмотці збудження змінюють перемикачем П.
3.3 Характеристика двигунів постійного струмуВластивості всіх електричних двигунів і, зокрема, постійного струму визначають за сукупністю трьох видів характеристик: пускових, робочих і регулювальних.
Пускові характеристики визначають властивості двигуна від моменту пуску до переходу його до усталеного режиму роботи. До цих характеристик належать пусковий струм , пусковий момент , час пуску і т.п.
Робочі характеристики визначають властивості двигуна при усталеному режимі роботи. До них належать залежність n, M, і при . До робочих характеристик належить і механічна характеристика двигуна при і .
Регулювальні хаарктеристмики визначають властивості двигунів при регулюванні швидкості їх обертання. До них належать межі й характер регулювання (плавний чи ступінчастий), а також простота і надійність регулюючої апаратури.
Розглянемо робочі характеристики двигунів з паралельним і послідовним збудженням.
3.3.1 Робочі характеристики двигунів з паралельним збудженнямРобочі характеристики двигуна з паралельним збудженням показано на рисунку 3.3.1.1. Вони є виразом залежності швидкості обертання n від струму якоря , електромагнітного моменту М і ККД η від корисної потужності Р2 на валу двигуна при сталій номінальній напрузі на його затискачах і сталому струмі збудження , тобто n, M, і при і .
Рис. 3.3.1.1. Робочі характеристики двигуна з паралельним збудженням
Іноді розглядають залежність і від корисного моменту валу , або залежність і від струму в якорі .
Швидкісна характеристика .
При номінальній напрузі і відсутності навантаження (холостий хід) струм якоря буде незначним і визначиться ординатою ОА.
Збільшення навантаження на валу двигуна є збільшенням гальмівного моменту. При цьому оберти двигуна і проти-ЕРС повільно зменшуються. І з зменшенням проти-ЕРС струм якоря збільшиться, а це зумовить збільшення обертального моменту двигуна, оскільки він пропорційний струму.
Обертальний момент збільшуватиметься доти, поки не зрівняється з гальмівним моментом. При цьому встановлюється нова постійна швидкість обертання, яка відповідає новому навантаженню двигуна. У цьому полягає принцип саморегулювання двигунів. Зменшення швидкості обертання при навантаженні двигуна становить всього 5-10 % номінальних обертів. Це пояснюється тим, що магнітний потік, створений струмом обмотки збудження, при всіх навантаженнях залишається сталим Ф ~ , а результуючий магнітний потік із збільшенням навантаження трохи зменшується завдяки реакції якоря, що веде до збереження швидкості двигуна.
Залежність моменту і струму якоря від навантаження: М і . При сталих обертах корисний обертальний момент буде пропорційний корисній потужності й крива перетвориться в пряму. Із збільшенням навантаження швидкості обертання n зменшується, отже, щоб потужність Р2 була так само корисною, обертальному моменту М треба мати більше значення, ніж при . Тому крива із збільшенням навантаження відхиляється в бік більших значень.
Згідно з формули при струму якоря треба б змінюватися прямо пропорційно моменту, але потік Ф при збільшенні навантаження трохи зменшується внаслідок розмагнічуючої дії реакції якоря. Отже, для створення того самого моменту струму якоря треба мати більше значення, ніж при . Тому крива більше вигнута, ніж крива .
Залежність ККД двигунів від Р2.
ККД двигуна визначається формулою
,
де – повна споживна потужність, а – сумарні втрати в двигуні.
При холостому ході .
При невеликому, але зростаючому навантаженні сумарні втрати (в основному втрати на тертя) залишаються практично сталими. ККД при цьому зростає, бо чисельник рівняння зростає швидше, ніж знаменник. При значному навантаженні дуже зростають втрати в обмотці якоря, тому що вони пропорційні квадрату струму. При навантаженні 0,7 – 0,8 % від номінального ККД двигуна починає зменшуватися.
Механічна характеристика двигуна з паралельним збудженням є залежністю при , і .
Враховуючи
і зробивши невеликі перетворення, матимемо рівняння залежності швидкості обертання від моменту:
.
Рис. 3.3.1.2. Механічні характеристики двигуна з паралельним збудженням
На рисунку 3.3.1.2 показано механічну характеристику двигуна паралельного збудження (при цьому нехтують реакцією якоря).
Властивість двигуна з паралельним збудженням зберігати майже незмінною швидкість обертання при значних змінах навантаження широко використовують на практиці.
3.3.2 Характеристка двигуна з послідовним збудженнямРобочі характеристики двигуна з послідовним збудженням аналогічні тим самим залежностям для двигуна з паралельним збудженням, а саме: n, M, і при або і при .
Швидкісна характеристика або при .
Зауважимо, що істотної різниці між характеристиками і немає, тому що при Р2 ~ Ія.
У двигуні з послідовним збудженням струм збудження є водночас і струмом навантаження , тому двигун не має характеристики холостого ходу . Магнітний потік двигуна з послідовним збільшенням залежить від завантаження. При збільшенні навантаження двигуна в перший момент порушується рівновага обертального і гальмівного моментів. Оберти вала почнуть зменшуватися, що приведе до збільшення струму якоря і обертального моменту М, який зростатиме доти, поки не зрівняється з гальмівним моментом. Оберти вала почнуть зменшуватися, що приведе до збільшення струму якоря і обертального моменту М, який зростатиме доти, поки не зрівняється з гальмівним моментом.
Отже, швидкість обертання двигуна із збільшенням навантаження зменшується. Якщо нехтувати спадом напруги в колі якоря та реакцією якоря і вважати, що магнітна система двигуна не насичена, то магнітний потік буде пропорційний струму якоря Ф ~ . Число обертів можна зобразити таким співвідношенням:
.
Це співвідношення показує, що із збільшенням навантаження швидкісна характеристика або нагадуватиме гіперболу. З кривої видно, що при зменшенні навантаження до нуля швидкість обертання безмежно збільшується. Насправді це не так, бо при холостому ході струм у якорі не дорівнюватиме нулю. Тому швидкість обертання двигуна при холостому ході хоч і не дорівнюватиме нескінченності, проте значно перевищуватиме номінальну швидкість (у 4-6 раз), що з погляду механіки не допустимо для двигуна (розрив бандажів, псування обмотки якоря тощо). Ось чому двигун послідовного збудження слід ставити в такі умови, при яких холостий хід двигуна був би неможливим.
Залежність моменту двигуна від Р2.
При ненасиченій магнітній системі можна вважати, що магнітний потік прямо пропорційний струму Ф ~ І. Тоді з формули
маємо:
.
Рис. 3.3.2.1. Робочі характеристики двигуна з послідовним збудженням
Отже, момент двигуна змінюється пропорційно квадрату струму, тому крива подібна параболі на рисунку 3.3.2.1. Але в міру збільшення струму якоря при збільшенні навантаження Р2 настає насичення магнітної системи машини. Тому і крива обертального моменту наближається до прямої лінії.
3.3.3 Залежність ККД двигуна від Р2Залежність ККД двигуна з послідовним збудженням від навантаження має характер, аналогічний такій самій залежності двигуна паралельного збудження.
Механічна характеристика.
Як було вже зазначено, у двигунах з послідовним збудженням струм збудження дорівнює струму навантаження:
.
Для ненасиченої машини основний магнітний потік Ф пропорційний струму якоря .
Враховуючи це, електромагнітний момент можна показати такою формулою:
,
Звідки
.
Враховуючи , число обертів двигуна можна подати таким рівнянням:
.
Рівняння є механічною характеристикою двигуна послідовного збудження.
Інструменти поділяються на вимірювальні та контрольні.
4.1 Вимірювальні інструментиВимірювальні інструменти – мікрометри, штангенциркулі, мікрометричні штихмаси, рівні валові та гідростатичні, щупи для вимірювання повітряних зазорів між площинами напівмуфт, динамометри пружинні, рулетки стальні, металева лінійка, лінійки перевірні стальні довгі.
4.2 Мікрометри, штангенциркулі, штихмасиМікрометрами вимірюють довжини та зовнішні діаметри розміром до 1000 мм, штангенциркулями – довжини деталей машини та діаметри отворів розміру до 2000 мм, штихмасами – внутрішні діаметри (напівмуфт статорів) або відстань між двома поверхнями.
4.3 Валовий та гідростатичний рівніВаловий рівень – вимірювальний інструмент, застосовується при центруванні валів при установці вала першої із машин агрегата в нормальне положення. Спеціальна форма виїмки в основі рівня зроблена для того, щоб він міг стійко утримуватись на циліндричній поверхні вала.
Рівнем визначається прогин вала і виконується його встановлення в положення з визначеним нахилом його шийок в підшипниках. Родільне биття сердечника ротора відносно шийок вала перевіряється індикатором.
Гідростатичний рівень призначений для грубого встановлення і вивіряння підшипників у горизонтальній площині, складається з двох скляних трубок з кришками і з’єднання гумовою трубкою, довжина якої залежить від відстані між поверхнями, які вимірюються.
... сцем називають певну ділянку виробничої площі, закріплену за даним робітником і оснащену необхідним устаткуванням, інструментами, пристроями, допоміжним обладнанням і приладами. Робочим місцем при ревізії, монтажі та ТО синхронних двигунів може бути будь-яка вільна від апаратів ділянка будівлі, оснащена потрібними інструментами, а якщо двигун має велику масу, то й підйомними механізмами. Для пі ...
... або телефонного паперу змазати клеєм БФ-2. Поверхня ізоляції шпильки покрити ізоляційним лаком БТ-99 і просушити на повітрі протягом 3 годин. Розділ 4. Технічне обслуговування й ремонт електричних машин 4.1 Обсяг робіт по технічному обслуговуванню й ремонту Найважливішою умовою правильної експлуатації електричних машин є своєчасне проведення планово-попереджувальних ремонтів і періодичних ...
... ів, з підвищеним ковзанням, багатошвидкісні на дві, три, чотири частоти обертання. 2. МЕХАНІЧНА ЧАСТИНА 2.1 Технічне обслуговування електродвигунів змінного струму Згідно з системою планово-запобіжного ремонту і технічного обслуговування електрообладнання технічна експлуатація електродвигунів передбачає: а) виробниче технічне обслуговування; б) міжремонтне технічне обслуговування; ...
... і заземлення; - планові огляди машин по затвердженому головним енергетиком графіку із заповненням журналу огляду; - усунення дрібних несправностей яке виконується під час перерви в роботі основного технологічного устаткування і не вимагає спеціальної зупинки електричних машин ( підтяжка контакторів і кріплень, регулювання щіткових механізмів і заміна щіток, регулювання траверс, пускорегулювально ...
0 комментариев