Расчет и выбор компенсирующих устройств

Электрооборудование свинарника-откормочника на 600 голов СТФ СПК "Первое Мая" Осиповичского района Могилевской области с разработкой схемы управления и защиты электропривода кормораздачи
104552
знака
26
таблиц
11
изображений

2.10 Расчет и выбор компенсирующих устройств

Электроприемники требуют для своей работы как активной, так и реактивной мощности. Реактивная мощность вырабатывается и передается по системе электроснабжения к потребителям. Снижая потребление приемниками реактивной мощности, можно уменьшить трансформаторную мощность подстанции, увеличить пропускную способность системы электроснабжения, не увеличивая сечение кабелей, проводов и других токоведущих частей.

Основными электроприемниками реактивной мощности на сельскохозяйственных объектах являются асинхронные двигатели, на их долю приходится 65 … 70% потребляемой реактивной мощности, 20 … 25% приходится на трансформаторы и около 10% – на воздушные линии, линии электропередач и другие приемники (люминесцентные лампы, реакторы и т.д.).

Компенсация реактивной мощности имеет большое народно-хозяйственное значение. Так увеличение коэффициента мощности на 0.01 в масштабах РБ дает возможность дополнительно вырабатывать сотни тысяч кВт·ч электроэнергии в год.

Компенсацию реактивной мощности осуществляем при помощи статических компенсаторов. Статические компенсаторы имеют очень малые потери мощности, бесшумны в работе, износоустойчивы, просты и удобны в эксплуатации.

Мощность Qн компенсирующего устройства (квар) определяем как разность между фактической наибольшей реактивной мощности Qм и предельной реактивной мощности Qэ предоставляемой предприятию энергосистемой:

Qн = Qм – Qэ = Pм · (tgцм – tgцэ), (93)

где Pм – мощность активной нагрузки в часы максимума энергосистемы, принимаем по средней расчетной мощности, кВт;

tgцм – фактический тангенс угла, соответствующий мощностям Pм, Qм;

tgцэ – оптимальный тангенс угла, соответствующий установленным предприятию условиям получения от энергосистемы мощностей нагрузки Pм, Qэ

(94)

cosцм =0.75 – без компенсации реактивной мощности.

cosцэ = 0.95; tgцэ = 0.33;

cosцм = 0.86; tgцм = 0.86.

Рм = 573.2 кВт.

Gн = Pм (tgцм – tgцэ) = 573.2 (0.86 – 0.33) = 303.80 квар.

Выбираем две комплектные конденсаторные установки ККУ – 0.38 – III. Номинальная мощность – 160 квар. В ККУ применяем конденсаторы без бумаги, пропитанной минеральным маслом, первого габарита, напряжением 0.38 кВ, тип конденсаторов – КМ – 0.38. Номинальная мощность конденсаторов – 0.35 квар.

Фактическое значение cosц при включении батареи:


tgцэ = tgцм, (95)

tgцэ = 0.882 –  = 0.323,

В схемах конденсаторных батарей предусматриваем специальные активные резисторы, которые подключаем параллельно конденсаторам. Эти резисторы необходимы для разряда конденсаторов после их отключения, так как естественный саморазряд происходит медленно. Разряд конденсаторных батарей осуществляем автоматически после каждого отключения батареи от сети. После отключения конденсаторной батареи происходит разряд ее на сопротивления за 3 … 5 минут, т.е. за время, необходимое для получения на батарее допустимого остаточного напряжения не свыше 50 В.

Разрядное сопротивление, необходимое для быстрого разряда конденсаторной батареи:

2.11 Проектирование электрических сетей 10 кВ.
(Расчет высоковольтного ввода)

Трансформаторная подстанция 10/0,4 кВ питается от двух воздушных линий 10 кВ длиной 15 километров и 25 километров от трансформаторных подстанций 35/10 кВ.

Рисунок 2.6. Расчетная схема сети 10 кВ


Определяем расчетный ток в линии 10 кВ по формуле:

 (96)

где Sp – полная расчетная мощность объекта, кВА.

А

Определяем сечение провода на линии 10 кВ методом экономической плотности тока. Площадь поперечного сечения провода определяется по формуле:

, (97)

где jэк – экономическая плотность тока, А/мм2.

Экономическую плотность тока определяем в зависимости от нагрузки и числа часов использования максимума нагрузки, равного Т=1000 ч. /13/. Экономическая плотность тока jэк=1.3.

Тогда

Из условия механической прочности принимаем провод марки AС-35 сечением F=35 мм2.

Определяем потери напряжения в линии 10 кВ по формуле:

, (98)

где r0– удельное активное сопротивление, Ом, r0=0,773 Ом/км;

х0 – удельное реактивное сопротивление, Ом, х0=0,308 Ом/км.

 В

Определяем потери напряжения в% по формуле:

 

, (99)

< 4%.

2.12 Мероприятия по снижению потерь электроэнергии

Эксплуатация электрооборудования – это совокупность подготовки и использования изделий по назначению: технического обслуживания, хранения и транспортировки.

Главная задача эксплуатации электрооборудования – поддержание его в исправном состоянии в течении всего времени эксплуатации и обеспечивать его бесперебойную и экономическую работу. При эксплуатации сельскохозяйственного оборудования особое внимание необходимо уделять на:

1.  Выбор мощности электрооборудования.

2.  Правильный выбор электрооборудования по условиям среды, в которой она работает, при этом необходимо учитывать режим работы.

3.  Обслуживание электрооборудования перед вводом в эксплуатацию, перед пуском.

4.  Своевременное плановое проведение технического обслуживания с учетом режима работы.

5.  Профилактические испытания электрооборудования.

Для экономии электроэнергии в дипломном проекте выполнены следующие мероприятия:

1.  Приняты экономичные источники освещения, что обеспечивает оптимальный расход электроэнергии.

2.  Выбор электроприводов машин транспортеров произведен с учетом коэффициента нагрузки, что исключает завышение мощности электроприемников, а тем самым и перерасход электроэнергии.

3.  Исключается холостой ход производственных механизмов с помощью ограничителей холостого хода.

4.  Ведется контроль за качеством напряжения на предприятии.

5.  Проектом предусмотрена разработка рекомендаций по надлежащей эксплуатации производственных механизмов (обеспечения современной смазки, регулировки), что уменьшает потери, а значит, не допускается перерасход электроэнергии.

6.  Предусмотрен комплекс мероприятий для повышения коэффициента мощности при помощи компенсирующих устройств.

7.  Для частых пусков спроектированы электроприводы, обладающие минимальной кинетической энергией системы.

8.  Произведен надлежащий выбор проводников с учетом потерь напряжения, в сетях включая сети 0,4 кВ и питающую линию 10 кВ

9.  Генпланом предусмотрено размещение трансформаторной подстанции с учетом ближайшего подвода электроэнергии к объектам.

10.  Трансформатор выбран с учетом экономических интервалов нагрузок, что исключает завышение его мощности.

2.13 Организация электротехнической службы по эксплуатации электрооборудования

В настоящее время при техническом обслуживании, диагностировании и ремонте электрооборудования в колхозах, совхозах в основном применяют три формы организации работ:

1.  Комплексная, рекомендуется при числе условных единиц до 300.

2.  Хозяйственная с привлечением специализированных организаций – при числе условных единиц от 301 до 800.

3.  Хозяйственная – при числе условных единиц более 800.

Так как электрооборудование совхоза «Коммунист» имеет 850 условных единиц, то принимаем хозяйственную форму организации работ. При такой форме техническое обслуживание, диагностирование и ремонт электрооборудования в совхозе выполняется силами электротехнического персонала хозяйства, однако для выполнения сложных, специфических работ (наладка, диагностирование) могут привлекаться и специализированные службы.

Структуру электротехнической службы, под которой понимается система управления исполнителями и распределение обязанностей между ними, различают:

-  линейно-универсальную;

-  функционально-специализированную;

-  матричную.

Для хозяйственной форм организации эксплуатации электрооборудования принимаем линейно-универсальную структуру.

При линейно-универсальной структуре руководитель службы осуществляет управление через старших электриков подразделений, которым подчиняются исполнители электрики, закрепленные за конкретным производственным участком.

Здесь реализуется принцип единоначалия. За исполнителем закрепляется определенный состав электрооборудования. Это повышает ответственность и качество технического обслуживания.


3. Специальная часть

3.1  Разработка схемы автоматизации

3.1.1 Общие сведения и технологические требования к автоматизируемой установке

Транспортные работы на животноводческих фермах (подвозка и раздача кормов, подстилки, вывоз молока, уборка и удаление навоза и др.) по затратам труда составляют примерно 30…40% всех работ.

На фермах значительное распространение получили электрифицированные транспортные средства, которые можно подразделить на стационарные и мобильные. К стационарным относятся ковшовые, скребковые, ленточные, шнековые и другие транспортёры, предназначенные главным образом для перемещения грузов в животноводческих помещениях, кормоцехах, молочных и в складах. К мобильным относятся электрифицированные передвижные кормораздатчики, электрокары, тельферы и др.

Автоматизация раздачи корма на фермах имеет большое значение для работников, и имеет следующие положительные эффекты:

—  облагораживает условия труда для работников;

—  увеличивает производительность труда;

—  уменьшает количество производственного травматизма.

В процессе развития свиноводства в нашей республике применяются три основные технологии приготовления и скармливания кормов: в сухом, влажном и жидком (полужидком виде). Одной из основных особенностей кормораздающих машин для свиней является дозирующих рабочих органов с дозированным процессом кормораздачи. Это характерно при раздаче влажных термообработанных смесей. Наиболее широкое применение нашли кормораздатчики типа: КС – 1.5; КЭС – 1.7; РС – 5.0А; КСП – 0.8.

В таблице 3.1 приведены механические характеристики мобильных бункерных кормораздатчиков, которые широко применяются в сельскохозяйственном производстве на свиноводческих фермах и комплексах.

Таблица 3.1. Технические характеристики мобильных кормораздатчиков

Показатели КС – 1.5 РС – 5.0А КЭС – 1.7 КСП – 0.8

Вместимость бункера, м3

Производительность, т/ч:

– на смешивании

– на раздаче сухого корма

– на раздаче влажного корма

Скорость передвижения при раздаче, м/с

Ширина колеи, мм

Требуемая ширина кормового проезда по кромкам кормушек, мм

Число электродвигателей, шт.

Потребляемая мощность, кВт

Габаритные размеры, мм

– длина

– ширина

– высота

Масса, кг

2.0

4.8

48.8

30.14

0.52

750

1400

4

7.35

2500

1730

1850

930

0.8

1.8

25.5

0.47

616

1400

1

3.0

3315

1675

1120

650

1.7

38.7

14.6

0.52

600…700

3

5.2

3000

996

1405

760

0.8

0.5

4.0

0.25

750

1400

3

4.5

26000

1800

1700

790

На свиноводческих фермах и комплексах широко применяется электромобильный кормораздатчик КЭС – 1.7. Он предназначен для дозированной раздачи в две рядом расположенные кормушки сухих, гранулированных и полужидких кормов, а также измельченных корнеклубнеплодов и зеленой массы.

Для изучения представленного выше кормораздатчика важно знать его конструкцию и технологическую схему, которая приведена на рисунке 3.1.


Рисунок 3.1. Технологическая схема мобильного кормораздатчика КЭС–1.7: 1 – тележка; 2 – бункер; 3 – шнек подающий; 4 – рычаг; 5 – заслонка; 6 – выгрузной люк; 7 – лоток; 8 – поводок-кронштейна ввода электропитания; 9,11 – электродвигатели; 10 – электропривод

Электрифицированный кормораздатчик КЭС–1.7 предназначен для раздачи кормов на свиноводческих фермах. Представляет собой бункер 2 (рис. 3.1) для корма, установленный на самоходной двухосной тележке 1, передвигающейся над двумя рядами кормушек по рельсовому пути, который расположен на эстакаде. Внутри бункера размещены два шнека 3, подающих корма к выгрузным окнам. Каждое окно закрывают заслонкой вручную.

Кормораздатчик передвигается при помощи индивидуального электропривода с асинхронным короткозамкнутым электродвигателем 10. Механизм выдачи кормов также от отдельных асинхронных короткозамкнутых электродвигателей 9 и 11. Индивидуальный электропривод значительно упрощает кинематическую схему кормораздатчика и тем самым повышает его эксплуатационную надежность.

Питание к электродвигателям от электросети 380/220 В подводится по гибкому кабелю. Кабель вводится в кормораздатчик с помощью поводка-кронштейна 8 и укладывается в деревянный лоток 7.

Управление кормораздатчиком автоматизированное, с помощью четырех конечных выключателей и реле времени. Упоры, посредством которых срабатывают конечные выключатели, – передвижные, что позволяет раздавать корма в любом месте кормушек.


Информация о работе «Электрооборудование свинарника-откормочника на 600 голов СТФ СПК "Первое Мая" Осиповичского района Могилевской области с разработкой схемы управления и защиты электропривода кормораздачи»
Раздел: Ботаника и сельское хозяйство
Количество знаков с пробелами: 104552
Количество таблиц: 26
Количество изображений: 11

0 комментариев


Наверх