Доверительный интервал.
Проверка статистических гипотез
1. Доверительный интервал
Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра. Однако оценка является приближенным значением параметра генеральной совокупности, которая при разных выборках одного и того же объема будет принимать разные значения, поэтому в ряде задач требуется найти не только подходящее значение параметра а, но и определить его точность и надежность.
Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность. Пусть для параметра а из опытных данных получена несмещенная оценка Требуется определить возможную при этом величину ошибки и вероятность того, что оценка не выскочит за пределы этой ошибки (надежность).
Зададимся некоторой вероятностью b (например, b = 0,99) и найдем такое значение e > 0, для которого
Представим это выражение в виде
Это значит, что с вероятностью b точное значение параметра а находится в интервале le
le
Здесь параметр а – неслучайная величина, а интервал le является случайным, так как - случайная величина. Поэтому вероятность b лучше толковать, как вероятность того, что случайный интервал le накроет точку а. Интервал leназывают доверительным интервалом, а вероятность b - доверительной вероятностью (надежностью).
Пример. Если при измерении какой-то величины Х указывается абсолютная погрешность Dх, то это, по существу, означает, что погрешность измерения, являясь случайной величиной, равномерно распределена в интервале (-Dх, Dх) и где Х* - измеренная величина, а х – ее точное значение. Здесь b = 1, e = Dх и le = (x*- Dх, x* + Dх).
1.1 Доверительный интервал для математического ожидания
В качестве еще одного примера рассмотрим задачу о доверительном интервале для математического ожидания. Пусть проведено n независимых опытов измерения случайной величины Х с неизвестным математическим ожиданием mx и дисперсией s2. На основании опытных данных Х1, Х2, ... , Хn построим выборочные оценки
Требуется построить (найти) доверительный интервал le, соответствующий доверительной вероятности b, для среднего генерального mx.
Так как среднее выборочное представляет сумму n независимых одинаково распределенных случайных величин то при достаточно большом объеме выборки согласно центральной предельной теоремы ее закон близок к нормальному. Существует эмпирическое правило, по которому при объеме выборки n ³ 30 выборочное распределение можем считать нормальным.
Ранее было показано, что Найдем теперь такую величину e(b) > 0, для которой выполняется равенство
Считая случайную величину нормально распределенной, имеем
После замены имеем
По табличным значениям функции Лапласа Ф*(z) находим аргумент, при котором она равна b. Если этот аргумент обозначить Zb, то тогда
Среднее квадратичное значение приближенно можно заменить
где
Таким образом, доверительный интервал для среднего генерального равен:
le =
Если пользоваться табличными значениями интеграла вероятностей
то доверительный интервал принимает вид
le =
... критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины . Для случайной величины : Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле , где - объем выборки, - шаг (разность между ...
... u0, u1, …, uk взаимно независимые нормально распределенные случайные величины с нулевым средним и конечной дисперсией. Аргумент t не зависит от дисперсии слагаемых. Функция плотности распределения Стьюдента статистический гипотеза математический ожидание Величина k характеризует количество степеней свободы. Плотность распределения – унимодальная и симметричная функция, похожая на нормальное ...
... данных и по внедрению накопленного арсенала современных методов прикладной статистики. По нашему мнению, широкого внедрения заслуживают, в частности, методы многомерного статистического анализа, планирования эксперимента, статистики объектов нечисловой природы. Очевидно, рассматриваемые работы должны быть плановыми, организационно оформленными, проводиться мощными самостоятельными организациями и ...
... и изучают их. Таким образом, выборочной совокупностью или просто выборкой объёма n будем называть совокупность n объектов, отобранных из интересующей нас генеральной совокупности. 2. Статистическая оценка законов распределения Если выборка объёма n из генеральной совокупности представительна, то элементы с одинаковыми значениями варианты будут приблизительно одинаково часто встречаться ...
0 комментариев