2.6 Организация прерываний
Прерывания осуществляются от 3 клавиш и от контроллера клавиатуры/дисплея. Сигнал прерывания, приходящий от ККД, поступает на вход Р3.2/INT0 МК.
Поскольку количество источников прерываний больше линий внешних прерываний микроконтроллера, то необходимо использовать дополнительную логическую схему «ИЛИ». При осуществлении хотя бы одного прерывания сигнал с элемента «ИЛИ» приходит на линию Р3.3/INT1 МК. При этом на одну из линий порта Р3 (P3.0, P3.1, P3.4) подается логическая 1. Таким образом, проанализировав программно состояние линий Р3.0, Р3.1 и Р3.4 можно в зависимости от номера нажатой клавиши передать управление подпрограмме обработки данного прерывания.
2.7 Последовательный интерфейс I2C
В данном разделе приводится описание двухпроводного последовательного I2C -интерфейса, так как он используется для обмена информацией между микроконтроллером внешними периферийными устройствами. В данном микроконтроллере данный интерфейс именуется как интерфейс TWI. Протокол TWI позволяет связываться с устройствами через одну двухпроводную двунаправленную шину, где одна линия - линия синхронизации SCL и одна - линия данных SDA.
В качестве внешних аппаратных компонентов, которые требуются для реализации шины, необходимы только подтягивающий к плюсу питания резистор на каждой линии шины. Все устройства, которые подключены к шине, имеют свой индивидуальный адрес. Внешнее подключение устройств к шине TWI изображено на рисунке….
Подключение устройств к шине TWI
Протокол передачи данных по шине разработан таким образом, чтобы гарантировать надежный качественный прием/передачу данных. При передаче данных одно устройство является “Ведущим”, которое инициирует передачу данных и формирует сигналы синхронизации. Другое устройство “Ведомое”, которое может начать передачу данных только по команде ведущего шины.
Каждое устройство на шине имеет уникальный адрес. Когда ведущий инициирует передачу данных, то сначала передается адрес устройства, к которому выполняется обращение. Остальные устройства проверяют переданный ведущим адрес. В составе байта адреса устройства входит бит направления передачи данных (выполняется чтение из ведомого или запись). Ведомый и ведущий шины всегда находятся в противоположном режиме работы, что можно представить в виде двух состояний: ведущий передатчик – ведомый приемник; ведомый передатчик – ведущий приемник. В обоих случаях ведущий формирует тактовый сигнал.
Вывод тактового сигнала SCL и данных SDA должны иметь выход с открытым коллектором, чтобы выполнять требования “монтажного И” на шине. Число устройств, которые могут быть подключены к шине, ограничивается только максимальной емкостью шины (400 пФ).
3 Описание работы контроллера клавиатуры/дисплея КР580ВД79
микроконтроллер разработка схема
Микросхема КР580ВД79, именуемая для краткости ККД (контроллер клавиатуры/дисплея), представляет собой универсальное программируемое устройство сопряжения с клавиатурой и дисплеем на основе семисегментных светодиодных индикаторов (ССИ).
Он состоит из двух основных функционально разделимых частей: клавиатурной и дисплейной. Клавиатурная часть предназначена для сопряжения с клавиатурой печатающих устройств и с произвольными наборами переключателей. Дисплейная часть ПККИ позволяет отображать информацию с помощью индикаторов различных типов (дисплеев). В нашем случае используется десять семисегментных индикаторов, которые используются в качестве алфавитно-цифрового дисплея.
Клавиатурная часть обеспечивает работу с клавиатурой размером 8x8 + 2 клавиши или с матрицей 8x8 датчиков. Обеспечиваются различные дисциплины распознавания нажатых клавиш, антидребезговый контроль. Имеется память кодов нажатых клавиш на 8 байт, организованная в виде очереди FIFO. При занесении в эту память более 8 кодов устанавливается признак переполнения. Нажатие клавиши возбуждает линию прерывания, которая может опознаваться в МК.
Дисплейная часть обеспечивает работу с дисплеем на семисегментных индикаторах (их может быть до 32 шт.). Имеется ОЗУ дисплея на 16 байт, организованное в виде двух массивов 16х4 бита. Память дисплея может быть загружена из МК и прочитана им. И в том, и в другом случае возможно автоинкрементирование адреса ОЗУ дисплея. Таким образом, ККД освобождает МК от задач постоянного сканирования клавиатуры и поддержания изображения на дисплее.
Назначение входных, выходных и управляющих сигналов ПККИ приведено в таблице 3.
Таблица 3
Обозначение вывода | Назначение вывода |
RL0-RL7 | Входы линий возврата, служащие для подачи сигналов от датчиков через контакты клавиш или ключа |
SHIFT | Вход сигнала сдвига, используемого для сканирования клавиатуры |
CNTL/STB | Вход сигнала управления для режима сканирования клавиатуры или стробирующего сигнала для режима ввода по стробу |
RD | Вход сигнала чтения L-уровня, разрешающего передачу информации из ПККИ в канал данных микропроцессора |
WR | Вход сигнала записи L-уровня, разрешающего передачу информации из канала данных микропроцессора в ПККИ |
A0 | Вход для управления записью/чтением данных или команд; при сигнале Н-уровня происходит запись команды или чтения состояния ПККИ, при сигнале L-уровня — запись или чтение данных |
CS | Выбора микросхемы; L — уровень сигнала разрешает работу схемы |
CLK | Вход сигнала синхронизации микросхемы |
RESET | Линия сброса ПККИ в начальное состояние |
DB0 – DB7 | Двунаправленная шина данных |
OA0 – OA3 | Выходы канала А (старшая тетрада) |
OB0 – OB3 | Выходы канала В (младшая тетрада) |
BD | Выход сигнала гашения отображения L-уровня |
SL0 – SL3 | Выходы сигналов сканирования клавиш клавиатуры |
IRQ | Выход сигнала прерывания |
Управление ККД с помощью сигналов на внешних выводах.
Управляющие слова (УС) загружаются в регистры управления ККД при . Загружая определенные УС, можно настроить ККД на работу в требуемом режиме и предписать выполнение некоторой операции.
Операции, выполняемые в ККД, определяются не только управляющим словом, но и комбинацией управляющих сигналов на его входах:
Направление и вид операций обмена между микропроцессором и ПККИ представлены в таблице 4.
Таблица 4
Сигналы управления | Вид операции обмена | |||
CS | A0 | RD | WR | |
1 | X | X | X | ПККИ не выбран |
0 | X | 1 | 1 | ПККИ не выбран |
0 | 0 | 0 | 1 | Чтение данных из памяти клавиатуры или дисплея |
0 | 0 | 1 | 0 | Передача команды с ШД в ПККИ |
0 | 1 | 0 | 1 | Чтение байта состояния ПККИ |
0 | 1 | 1 | 0 | Загрузка управляющего слова в ПККИ |
УС инициализации клавиатуры и дисплея (УС0):
0.0.0.D.D.KK.S.
Здесь DD кодирует режим работы дисплея, КК - режим работы клавиатуры, S - режим сканирования в соответствии со следующими правилами:
DD:00Дисплей на 8 символов с вводом слева
01Дисплей на 16 символов с вводом слева
10Дисплей на 8 символов с вводом справа
11Дисплей на 16 символов с вводом справа
Описание режимов правого и левого вводов приводится ниже. Если сканирование идет в режиме дешифратора, то дисплей не может быть больше, чем на четыре символа (так как линии SL общие).
КК: 00 Клавиатура в режиме одиночного нажатия клавиш
01 Клавиатура в режиме N-клавишного нажатия
10 Сканирование матрицы датчиков
11 Режим стробируемого ввода
S:0Сканирование в режиме 4-битного двоичного счетчика
1Сканирование в режиме инверсного дешифратора на четыре выхода.
После сброса ККД оказывается в режиме, соответствующем УС0-00001000. При сканировании в режиме счетчика цикл опроса клавиатуры укладывается в восемь состояний счетчика от "0000" до "0111" и oт "1000" до "1111". Таким образом, в этом режиме опрос клавиатуры происходит дважды в каждом цикле полного пересчета счетчика SLO—SL3, т.е. для сканирования клавиатуры используются только три младшие линии SLO-SL2.
УС инициализации опорной частоты (УС1): О.О.1.Р.Р.Р.Р.Р. Здесь РРРРР устанавливает коэффициент деления частоты внешнего синхросигнала CLK для получения внутреннего опорного сигнала с частотой не более 100 кГц. После сброса устанавливается максимальный коэффициент РРРРР, равный 11111. При частоте внутреннего опорного сигнала 100 кГц один полный цикл сканирования занимает приблизительно 10,2 мс.
УС чтения памяти клавиатуры/датчиков (УС2): О.1.0.I.Х.А.А.А. УС2 должно предшествовать чтению данных из памяти клавиатуры. Здесь I есть признак автоинкрементной адресации; ААА устанавливает адрес байта памяти, который должен быть считан. Если бит I установлен, то последующие команды чтения данных будут вызывать автоматическое увеличение адреса. Таким образом, если необходимо прочитать всю память клавиатуры, то это можно сделать, загрузив УС2 с битом I = 1 и затем 8 раз считать данные из ККД.
УС чтения памяти дисплея (УСЗ): 0.1.1.I.A.AA.A. УСЗ должно предшествовать чтению данных из памяти дисплея. Здесь I есть признак автоинкрементной адресации: АААА — номер позиции дисплея, которая должна быть считана. Если I = 1, то адрес будет инкрементироваться после каждого чтения.
УС записи в память дисплея (УС4): 1.0.0.1.А.А.А.А. Кодирование аналогично УСЗ. Поле АААА определяет адрес байта в ОЗУ дисплея.
УС запрета записи в память дисплея и бланкирования дисплея (УС5): 1.0.1.X.IWA.IWB.BLA.BLB. Здесь IW - указатель запрета записи (тетрады А и В), BL - указатель бланкирования (очистки) (тетрады А или В). Если дисплей используется как двойной 4-позиционный, то удобно маскировать одну из тетрад, чтобы работа процессора с одной тетрадой не отражалась на другой. Эту возможность дает указатель IW. Указатель BL используется для бланкирования дисплея; если он установлен. То на выходах А и/или В устанавливается специальный бланкирующий код (см. УС6). Содержимое памяти дисплея при этом не изменяется, Если дисплей используется как единый 8-позиционный, то необходимо устанавливать оба указателя.
УС сброса памяти дисплея (УС6): 1.1.0.CD.BC.BC.CF.CA. УС6 служит для: выбора кода бланкирования (ВС), сброса байта состояния (CF) и сброса памяти дисплея (CD). Биты ВС позволяют выбрать один из трех возможных бланкирующих кодов.
После общего сброса контроллера бланкирующий код устанавливается равным ООН.
Процедура сброса памяти дисплея осуществляется путем заполнения кодами бланкирования. Процедура инициируется при установке бита CD и продолжается примерно 160 мкс. В это время память дисплея недоступна, на что указывает старший бит байта состояния контроллера.
Бит CF, будучи установлен, сбрасывает байт состояния, сигнал прерывания и устанавливает указатель памяти матрицы датчиков на строку 0. Управляющий бит СА работает как биты CD и CF в совокупности, а также сбрасывает схему внутренней синхронизации.
УС сброса прерывания/установки режима ошибки (УС7): U.1.E.X.X.XX В состоянии матрицы датчиков УС7 сбрасывает линию прерывания и разрешает дальнейшую запись в память клавиатуры (матрицы датчиков). В режиме N-клавишного нажатия, если установлен бит Е, контроллер переходит в режим ошибки.
Режим одиночного нажатия клавиш. Дисциплина опознания нажатых клавиш в этом режиме такова: если обнаружено нажатие одной клавиши, то в течение следующих двух циклов сканирования клавиатуры будет производиться проверка нажатия других клавиш. Если таких клавиш не будет, то нажатая клавиша признается единственной и код ее записывается в память клавиатуры. Если в течение этих двух циклов будет обнаружено нажатие еще одной клавиши, то в память клавиатуры не заносится код ни одной клавиши до тех пор, пока не будут освобождены все клавиши, кроме одной. После того как все, кроме одной, клавиши будут освобождены и не будут нажаты новые в течение двух циклов, код этой клавиши будет занесен в память клавиатуры. Код клавиши заносится в память клавиатуры только один раз на каждое нажатие.
Режим N-клавишного нажатия. В этом режиме нажатие каждой клавиши фиксируется независимо от состояния остальных клавиш. Когда клавиша нажата, пропускаются два цикла опроса клавиатуры, а затем проверяется, осталась ли данная клавиша нажатой. Если да, то ее код заносится в память. При одновременном нажатии распознавание клавиш производится в порядке их опроса в цикле сканирования клавиатуры. Опознание всех клавиш ведется независимо. На каждое нажатие код клавиши вводится только один раз.
Специальный режим ошибки при сканировании клавиатуры. Для режима сканирования клавиатуры с N-клавишным нажатием с помощью УС7 можно запрограммировать специальный режим ошибки. Если в течение одного цикла сканирования будут нажаты две клавиши, это трактуется как совместное нажатие и устанавливается флаг ошибки в байте состояния. Этот флаг запрещает дальнейшую запись в память клавиатуры и устанавливает линию прерывания (если она не была установлена). Флаг ошибки можно сбросить с помощью УС6, установив в нем CF= 1.
Режим матрицы датчиков. В этом режиме "антидребезговая" логика не работает. Состояние датчиков непосредственно записывается в память матрицы датчиков (память клавиатуры). Хотя антидребезговый контроль и не обеспечивается, МК может иметь информацию о том, как долго датчик находится в единичном или нулевом состоянии (у датчика подразумеваются только два состояния). Линия прерывания устанавливается в единицу, если в конце цикла сканирования матрицы хотя бы один из датчиков изменил свое состояние, и сбрасывается при первой же операции чтения, если не был установлен указатель автоинкрементирования.
Форматы данных. В режиме клавиатуры байт, записываемый в память клавиатуры, отражает положение клавиши на клавиатуре, а также состояние входов CNTL и SHIFT. Формат данных в этом режиме CNTL.SHIFT.SL2.SL1.SL0.R2.R1.RO.
Здесь SL2-SLO - двоичный код строки, в которой находится клавиша, R2-RO - двоичный код колонки, в которой находится клавиша (номер линии RL, на которую поступил нулевой сигнал).
В состоянии матрицы датчиков данные, приходящие на линии RL7—RLO, непосредственно вводятся в память клавиатуры. Таким образом, каждое изменение в датчиках в течение одного цикла будет отражено в памяти. Состояния SHIFT и CNTL игнорируются.
Формат данных в режиме стробируемого ввода; RL7.RL6.RL5.RL4, RL3.RL2.RL1.RLO. В этом режиме данные также вводятся в память по линиям RL7-RL0, но при этом ввод стробируется линией CNTL/STB. Данные заносятся в память по фронту сигнала CNTL/STB.
Следует помнить, что цикл сканирования клавиатуры постоянен, не зависит от размера дисплея и соответствует максимальной конфигурации клавиатуры 8x8 при сканировании в режиме счетчика и 4х8 при сканировании в режиме дешифратора.
Режимы работы дисплея
Ввод слева. Это самый простой формат ввода. При нем каждой позиции на дисплее однозначно соответствует байт в памяти дисплея. Нулевой адрес памяти дисплея соответствует самой левой нулевой позиции дисплея, адрес 15 (7 для 8-позиционного дисплея) соответствует самой правой позиции дисплея. При переходе за 16 (8) позиций следующие символы будут опять вводиться слева с нулевой позиции, т.е. 17-й (9) символ займет крайнюю левую позицию.
Ввод справа. Этот способ ввода используется в калькуляторах. Первый вводимый символ заносится в крайнюю правую позицию. Следующие символы также заносятся в крайнюю правую позицию, но после того, как все символы на дисплее сдвинутся на одну позицию влево. Самый левый символ при этом теряется. Заметим, что здесь номера позиций на дисплее уже не соответствуют адресам памяти дисплея. Адрес памяти дисплея в этом случае соответствует порядковому номеру нажатой клавиши. Указание позиции, в которую должен быть введен символ при автоинкрементируемом вводе (см. далее), может иметь непредсказуемый результат.
Автоинкрементирование. В состоянии ввода слева это означает, что следующий символ, поступающий из МК, будет размещен по адресу, на единицу большему, чем предыдущий. При отсутствии автоинкремента ввод будет произведен в ту же самую позицию. Использование автоинкремента при вводе слева не порождает непредсказуемых эффектов, даже если после ввода нескольких символов нужно ввести очередной символ не в следующую, а в произвольную позицию. Это обусловлено тем, что позиция на дисплее при вводе слева однозначно соответствует адресу памяти дисплея. При вводе справа с автоинкрементированием попытка ввести символ в фиксированную позицию будет иметь непредсказуемый результат.
Формат дисплея. Если используется 8-позиционный дисплей, то время цикла сканирования дисплея в 2 раза меньше, чем для 16-позиционного дисплея. При внутренней частоте 100 кГц это время составляет 1 и 10,2 мс соответственно.
Байт состояния памяти клавиатуры/датчиков
Байт состояния используется в режиме клавиатуры и стробируемого ввода для отображения числа введенных символов и индикации ошибки. Возможны два вида ошибок: переполнение и пеpeoпустошение. Флаг переполнения устанавливается, когда делается попытка записи в заполненную память клавиатуры. Флаг переопустошения устанавливается, если была попытка считать из пустой памяти клавиатуры. Байт состояния имеет также бит DU, показывающий, что дисплей недоступен из-за того, что завершена очистка памяти дисплея. В специальном режиме ошибки бит S/E является флагом ошибки и указывает на множественное нажатие клавиш. В режиме матрицы датчиков этот бит показывает, что имеется хотя бы один "замкнутый" (нулевой) датчик.
Формат байта состояния памяти клавиатуры/датчиков: DU.S/E.O.U.F.N.N.N
DU - дисплей недоступен;
S/E - датчик "замкнут"/ошибка многократного нажатия;
О - ошибка переполнения;
U - ошибка переопустошения;
F — память клавиатуры заполнена;
NNN — количество символов в памяти клавиатуры.
... и n-1 сегментами. Такой подход задан в светодиодном драйвере Maxim MAX6951 для управления 8-ю цифрами на всего 9-ти ножках. РАЗДЕЛ 2 РАЗРАБОТКА СВЕТОДИОДНОЙ МАТРИЦЫ 2.1 Постановка задачи Требуется разработать светодиодную матрицу, которая будет использоваться в праздничные и торжественные дни, на дискотеках, создавая различные световые эффекты. Разработка устройства будет производиться с ...
... создания устройств на микроконтроллера: этапы выполнения работ, разработка программного обеспечения, внедрения в производство. В проекте осуществлена практическая разработка многофункциональных астрономических часов, которые показываю различное время (марсианское, юлианское, лунное и др.), произведен выбор микроконтроллера для осуществления всех поставленных задач, разработаны структурная и ...
... 4,5 - 5,5 В (ATmega16) * Рабочая частота 0 - 8 МГц (ATmega16L) 0 - 16 МГц (ATmega16) Рисунок 1.4 – Функциональная схема микроконтроллера ATMega 16L РАЗДЕЛ 2 РАЗРАБОТКА УСТРОЙСТВА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ СВЕТА Несмотря на бурное развитие сверхъярких светодиодов, в широкой продаже пока не появились светодиодные лампы, способные заменить бытовые лампы накаливания. Получившие ...
... источника меньше допустимого значения) и блок управления включает индикатор “Смените источник питания”. При восстановлении напряжения сети системы резервного электропитания опять переходит в режим нормальной работы. 2. Конструкторско-технологический раздел 2.1 Разработка печатной платы Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком ( ...
0 комментариев