Расчёт и анализ нерекурсивного цифрового фильтра

7338
знаков
4
таблицы
7
изображений

1. Краткое математическое описание методов расчёта

1.1. Общие положения

Цифровой фильтр полностью описывается своим разностным уравнением:

(1)

Для нерекурсивного цифрового фильтра  и уравнение принимает вид:

(2)

Зная коэффициенты разностного уравнения, можно легко получить выражение для передаточной функции фильтра (для НЦФ):

(3)

Для образа выходного сигнала НЦФ справедливо выражение

, (4)

где  – z-преобразования выходного и входного сигналов фильтра.

Зная выражение (4) и учитывая, что z-преобразование функции единичного скачка  равно 1, можно получить выражение для z-образа импульсной характеристики :

(5)

Из (5) следует, что отсчеты импульсной характеристики НЦФ численно равны коэффициентам разностного уравнения НЦФ, а сама импульсная характеристика и передаточная функция связаны парой z-преобразований (прямым и обратным).

Заменив в (4) z на , получим комплексную частотную характеристику:

(6)

Импульсная характеристика и комплексная частотная характеристика связаны парой преобразований Фурье:

(7)

(8)

Из комплексной частотной характеристики можно получить выражения для АЧХ и ФЧХ:


(9)

(10)

Во все вышеприведённые формулы входит интервал квантования . Чтобы от него избавиться, частоту обычно нормируют. Это можно сделать с помощью замены:

(11)

Так как интервал определения , то интервал определения . Исходными данными для проектирования фильтра является его АЧХ. Как правило, в зонах неопределённости АЧХ некоторым образом доопределяют с тем, чтобы избежать явления Гиббса («выбросы» характеристики в точках разрыва первого рода – «скачках»). В простейшем случае доопределить АЧХ можно линейным законом. В этом случае АЧХ проектируемого полосового фильтра будет выглядеть таким образом.

Аналитически АЧХ будет записываться в виде:

(12)


При проектировании часто полагают, что ФЧХ фильтра является линейной. В [1] показывается, что в этом случае импульсная характеристика фильтра является либо симметричной (), либо антисимметричной (). Учитывая, что порядок фильтра  может быть чётным и нечётным, существует четыре вида ИХ с линейной ФЧХ:

1.  N – нечётное, ИХ – симметричная

2.  N – чётное, ИХ – симметричная

3.  N – нечётное, ИХ – антисимметричная

4.  N – чётное, ИХ – антисимметричная

цифровой фильтр выборка частотный

1.2 Метод частотной выборки

Основная идея метода частотной выборки – замену в выражениях (7) и (8) непрерывную частоту дискретизированной. В этом случае выражения (7) и (8) превращаются в пару дискретных преобразований Фурье:

(13)

(14)

Существует 2 метода дискретизации частоты (выражения записаны для нормированной частоты):

(15)

(16)


Выражения (13) и (14) записаны для первого метода дискретизации частоты. По условию задания необходимо использовать второй метод дискретизации частоты, в этом случае выражение (14) приобретает вид:

(17)

Из (17) следует, что для определения импульсной характеристики необходимо знать частотную характеристику. Её можно записать в показательной форме:

(18)

(19)

При чётном N:

(20)

При нечётном N:

(21)


Подставляя вместо  , по выражениям (20) и (21) можно найти , а из (17) – .

1.3 Метод наименьших квадратов

При расчете коэффициентов импульсной характеристики используется формула вида:

после чего решается система уравнений:

Описание: 猪Բ直Բˆ и находятся коэффициенты Ск.

Далее из найденных Ск можно найти коэффициенты импульсной характеристики:

  Описание: ˆ


2. Расчётная часть

2.1 Расчёт методом частотной выборки

 

2.1.1 Расчёт импульсной характеристики

Расчёт импульсной характеристики для нечётных N осуществлялся по формулам (21) и (17), для чётных – по формулам (20) и (17). Результаты расчёта импульсной характеристики для N=15, 25 и 32 представлены в таблице 1.

Таблица 1. Результаты расчёта импульсной характеристики методом частотной выборки

i

Значение импульсной характеристики

N=15 N=25 N=32

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0,081

-0,013

0,025

-0,052

-0,303

0,03

0,46

0,03

-0,303

-0,052

0,025

-0,013

0,081

0,001497

0,001756

-0,02

-0,007456

-0,007554

0,028

0,061

-0,004905

0,034

-0,048

-0,297

-0,035

0,45

0,035

-0,297

-0,048

0,034

-0,004905

0,061

0,028

-0,007454

-0,007456

-0,02

0,001756

0,001497

0,001488

-0,008534

0,008698

-0,000256

0,003711

-0,011

0,015

-0,007875

-0,001266

0,053

0,029

0,0009025

0,04

-0,193

-0,224

0,321

0,321

-0,224

-0,193

0,04

0,0009025

0,029

0,053

0,001266

-0,007875

-0,015

-0,011

-0,003711

-0,000256

0,008698

-0,0008534

0,001488


Информация о работе «Расчёт и анализ нерекурсивного цифрового фильтра»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 7338
Количество таблиц: 4
Количество изображений: 7

Похожие работы

Скачать
72858
1
34

... кодовыми словами конечной размерности (ошибки квантования). Поэтому сигнал на выходе цифровой цепи отличается от идеального варианта на величину погрешности квантования. Цифровая техника позволяет получить высокое качество обработки сигналов несмотря на ошибки квантования: ошибки (шумы) квантования можно привести в норму увеличением разрядности кодовых слов. Рациональные способы конструирования ...

Скачать
53357
2
20

... сим=()*tg(k*l)/=(7,5/π)* tg(0,837*1,875)/7,5 =8,72*10-3м; Нд несим=0,5*Нд сим=4,36*10-3 м. UД=ЕД*НД=0,0000394*4,36*10-3=1,72*10-6 В Проверено выполнение следующего условия: UДUтр1,72*10-60,21*10-6. Из этого вытекает, что радиоприёмное устройство будет уверенно принимать сигнал. Рассчитано номинальное значение отношения сигнал/шум на входе приёмника:   9(1,72*10-6/0,21*10-6)2 = ...

0 комментариев


Наверх