1.  В цепи секционных выключателей рабочих шин 110-220 кВ – для автоматического управления секционными выключателями;

2.  В цепи трансформаторов со стороны РУ 110 кВ и РУ 220 кВ – для обеспечения защиты трансформаторов.

  3.2 Места установки измерительных трансформаторов напряжения

микропроцессор трансформатор ток релейное

Для обеспечения защит требуемыми данными по напряжению достаточно установки трансформаторов напряжения на каждую секцию РУ 110-220 кВ.

Требуемые места расстановки измерительных трансформаторов тока и напряжения представлены на полной схеме ПС Е формата А1 курсового проекта.


4. Распределение функций релейной защиты и автоматических устройств по измерительным трансформаторам

Распределение функций защит и автоматик по измерительным трансформаторам наглядно иллюстрирует рисунок 4. На рисунке в качестве примера приведена одна рабочая система шин с отходящей линией.

Распределение функций задано в табличной форме где изображены: название функции защиты (автоматики) и её номер по международному стандарту IEEE.

Рисунок 4 Распределение функций релейной защиты и автоматики по измерительным трансформаторам


5. Объём и места снятия информации в автоматизированную систему управления подстанции

Автоматизированная система управления (АСУ-ТП) является универсальной системой, позволяющей производить автоматический контроль режимов работы всего оборудования подстанции, как основного силового, так и вторичных цепей РЗА и оперативного тока.

Необходимой информацией для АСУ-ТП является:

·  Информация о положениях коммутационных устройств во вторичных цепях РЗА;

·  Информация о положении автоматов оперативного тока;

·  Информация о положении блок контактов всех выключателей ПС, а также разъединителей;

·  Показания напряжения и тока с измерительных трансформаторов;

·  Информация о перетоках мощности по подходящим (отходящим) линиям и загрузки трансформаторов.

Информация в АСУ-ТП поступает: от измерительных трансформаторов напряжения, установленных на рабочих секциях; счетчиков электрической энергии, установленных на подходящих линиях; непосредственно с блок-контактов выключателей и т.п.


6. Адреса действия защит и автоматик

Адреса действия защиты разделяются на два режима работы схемы, при которых защита должна работать.

1.  Нормальный рабочий режим (секционные выключатели со стороны 110-220 кВ включены, выключатели в цепи трансформаторов и отходящих линий включены, линии в работе):

·  Основные и резервные комплекты действуют на отключение выключателя отходящей линии и на пуск сигнала передачи телеотключающего импульса на противоположный конец ЛЭП;

·  При отказе выключателя УРОВ действует через дифференциальную защиту ошиновки на отключение секционного выключателя и отключение автотрансформатора со стороны возникновения повреждения;

·  АПВ (ОАПВ для случая ВЛ 220 кВ) с заданной выдержкой действует на повторное включение выключателя отходящей линии;

·  Подаётся сигнал на сохранение отслеживаемой информации, записываемой автоматикой регистрации аварийных событий.

2.  Ремонтный режим (секционные выключатели со стороны 110 (220) кВ отключен, выключатели в цепи трансформаторов и отходящих линий включены, линии в работе):

·  Основной и резервный комплексы защит действуют аналогично нормальному режиму;

·  УРОВ действует только на отключение выключателя автотрансформатора;

·  Работа АПВ аналогична нормальному режиму работы;

·  Подаётся сигнал на сохранение отслеживаемой информации, записываемой автоматикой регистрации аварийных событий.


7. Расчёт токов короткого замыкания

Расчёт токов к.з. необходимо производить для правильной настройки релейной защиты. Настройку РЗ необходимо производить по максимальному и минимальному току к.з. в данном пункте надо рассчитать токи трёхфазного к.з: .

  7.1 Выбор линий и трансформаторов, расчёт параметров линий и трансформаторов

Для расчёта к.з. в зоне действия установленных защит необходимо произвести выбор автотрансформаторов, установленных на ПС Е, трансформаторов ПС Д и ПС К, а также всех линий.

На ПСЕ в качестве силового трансформатора необходимо установить автотрансформатор, т.к. основное назначение ПС – связь двух систем напряжениями 110 и 220 кВ.

Для выбора проводов и трансформаторов произведём потокораспределение максимальной мощности в режимах, при которых отключены линии W3D и W4D. Потокораспределение будем производить из условия максимальной загрузки линий W1С и W2С.

Потокораспределение мощности при отключении линии W3D представлено на рисунке 7.1.1.


Рисунок 7.1.1 Потокораспределение мощности при отключении линии W3D

Потокораспределение мощности при отключении линии W4D представлено на рисунке 7.1.2.

Рисунок 7.1.2 Потокораспределение мощности при отключении линии W4D

Расчёт проводов ЛЭП сведён в таблицу 1

Таблица 1 Расчёт проводов ЛЭП

Линия

Тип провода
115 W1C, W2C 109 0,85 128,24 608 610 АС-240/39
W3C, W4C 75 0,85 88,24 420 610 АС-240/39
230 W1D, W2D 210 0,85 247,06 586 945 АС-500/64
W3D 334 0,85 392,94 933 945 АС-500/64
W4D 334 0,85 392,94 933 945 АС-500/64
W5D 212 0,85 249,41 592 690 АС-300/48
W6D 301 0,85 354,12 840 860 АС-400/69
W7D, W8D 122 0,85 143,53 341 610 АС-240/39

Расчётные параметры проводов представлены в таблице 2.

Таблица 2 Расчётные параметры проводов

Линия Тип провода

W1C, W2C АС-240/32 65 0,118 0,405 7,67 26,33
W3C АС-240/32 51 0,118 0,405 6,02 20,66
W4C АС-240/32 49 0,118 0,405 5,78 19,85
W1D, W2D АС-500/64 60 0,059 0,413 3,54 24,78
W3D АС-500/64 85 0,059 0,413 5,02 35,11
W4D АС-500/64 25 0,059 0,413 1,48 10,33
W5D АС-300/48 110 0,096 0,429 10,56 47,19
W6D АС-400/69 38 0,073 0,42 2,77 15,96
W7D, W8D АС-240/32 51 0,118 0,435 6,02 22,19

Выбор трансформаторов:

Приняв за  всех потребителей  получим:

К установке принимаем автотрансформатор типа: АТДЦТН-63000/220/110/0,4. Автотрансформатор специально предназначен для связи электрических сетей напряжением 220 и 110 кВ и питания собственных нужд ПС мощностью 0,63 и 1,25 МВА напряжением 0,4 кВ.[5].

Проверка по коэффициенту загрузки:

Данный автотрансформатор к установке на ПС Е подходит.

Номинальные данные автотрансформаторов представлены в таблице 3.

Таблица 3 Номинальные данные автотрансформатора АТДЦТН-63000/220

Тип Пределы регулирования

Каталожные данные

 

ВН СН НН ВН- СН ВН- НН СН- НН

 

АТДЦТН-63000/220/110/0,4

230 121 0,4 145 11 -- -- 315

 

К установке на ПСК и ПСД принимаем трёхфазные трёхобмоточные трансформаторы типа ТРДН-63000/220, номинальные данные трансформатора представлены в таблице 4.

Таблица 4 Номинальные данные трансформатора ТРДН-63000/220

Тип

Рег. напряж.

 

ВН НН
ТРДН-63000/220 63

230 11/11 11,5 82 504 3,9 96,7
  7.2 Расчёт параметров схемы замещения в относительных единицах

Расчёт производим с использованием относительных единиц с приближённым приведением параметров схемы замещения. Активными сопротивлениями элементов схемы пренебрегаем.

Принимаем следующие базисные величины:

;

;

.

ЭДС системы:

Сопротивление системы:

Где

где

Сопротивление воздушных линий определяется по формуле:

Для энергосистемы 110 кВ:

Для энергосистемы 220 кВ:

Сопротивление трансформаторов определяется по формуле:

  7.3 Расчёт максимального тока трёхфазного короткого замыкания

Максимальных ток к.з. рассчитывается при условии работы всех элементов (трансформаторов и линий) схемы. По условию ток к.з. рассчитываем по обоим концам защищаемых линийсм. рисунок 7.3.1.


Рисунок 7.3.1 Схема замещения к расчёту тока к.з.

Расчёт тока в точке

где:

Расчёт тока в точке

 де:


Расчёт тока в точке

где:

Расчёт тока в точке

Для расчёта тока к.з. в точке  необходимо преобразовать в эквивалентную звезду образованный линиями  треугольник сопротивлений, см. рисунок 7.3.2.

Рисунок 7.3.2 Схема замещения для расчёта тока к.з. в точке


где:

Тогда:

где:

Расчёт тока в точке

где:

Результаты расчёта максимального тока к.з. сведён в таблицу 5.

Таблица 5 Результаты расчёта максимального тока к.з.

Точка к.з.

, кА

, кА

1,058 0,08 0,502 6,64

1,042 0,096 0,502 5,48

1,022 0,074 0,251 3,48

1,019 0,086 0,251 2,98

1,012 0,047 0,251 5,405
  7.4 Расчёт минимального тока трёхфазного короткого замыкания

Минимальный ток к.з. для точек  рассчитываем из условия вывода в ремонт линии W3D, что обеспечит наибольшее эквивалентное сопротивление схемы, для точки  - из условия отключения W1C.

Схема замещения для расчёта минимального тока к.з. представлена на рисунке 7.3.1 с учётом вывода из схемы соответствующих линий.

Расчёт выполняем аналогично предыдущему пункту. Расчёт сведён в таблицу 6.

Таблица 6 Расчёт минимального тока к.з.

Точка к.з.

, кА

, кА

1,065 0,0891 0,502 5,996

1,05 0,1154 0,502 4,57

1,035 0,1153 0,251 2,25

1,03 0,124 0,251 2,08

1,008 0,0497 0,251 5,094

8. Выбор системы оперативного тока

Оперативный ток на подстанциях служит для питания вторичных устройств, к которым относятся оперативные цепи защиты, автоматики и телемеханики, аппаратура дистанционного управления, аварийная и предупредительная сигнализация.

Т.к. на ПС Е в качестве основного силового автотрансформатора установлен автотрансформатор типа АТДЦТН-63000/220/110/0,4[6], с дополнительной обмоткой 0,4 кВ для питания собственных нужд, целесообразно использовать на ПС систему питания переменного оперативного тока.

На подстанциях с переменным оперативным током питание цепей автоматики, управления и сигнализации производится от шин собственных нужд через стабилизаторы напряжения.

Стабилизаторы напряжения предназначены для:

1) поддержания необходимого напряжения оперативных цепей при работе АЧР, когда возможно одновременное снижение частоты и напряжения;

2) разделения оперативных цепей и остальных цепей собственных нужд подстанции (освещение, вентиляция, сварка и т.д.), что существенно повышает надежность оперативных цепей.


Заключение

В процессе выполнения курсового проекта был произведён выбор микропроцессорных терминалов продольной дифференциальной защиты линий, определены места установки измерительных трансформаторов тока и напряжения.

В качестве системы связи между полукомплектами защит по концам линий в проекте предусмотрено применение ВОЛС.

Для точной настройки тока срабатывания защит был произведён расчёт максимального и минимального тока к.з.

По произведённым расчётам к установке в качестве основной защиты принят терминала дифференциальной защиты линии ШДЗЛ (параметры которого описаны в пункте 1.3); в качестве резервной защиты к установке (согласно ПУЭ) принимаем трёхступенчатую дистанционную защиту; от замыканий на землю – ступенчатую токовую направленную защиту нулевой последовательности.

Полная схема ПС Е представлена на формате А1 проекта. На чертеже также обозначены значения токов к.з.


Список использованной литературы

1.  Справочник по проектированию электрических сетей/И.А. Карапетян, Д.Л. Файбисович, И. М. Шапиро.- 2-е изд., перераб. и доп. – М.: ЭНАС, 2007.- 352 с.: ил.

2.  16581 тм. Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО «ФСК ЕЭС», ООО «Экспертэнерго». Новосибирск 2006.-131 с.

3.  Релейная защита электроэнергетических систем/ Э.И.Басс, В.Г.Дорогунцев.- Второе изд.,стереотип. – М.: издательский дом МЭИ, 2006.- 296 с.

4.  278 тм. «Схемы принципиальные электрические распределительных устройств подстанций 35-750 кВ».

5.  Правила устройства электроустановок (ПУЭ) (6-е изд., перераб., дополн., с изм.), 2004 г.


[2] Релейная защита электроэнергетических систем. Под ред. А. Ф. Дьякова.

[3] Современные средства релейной защиты и автоматики электросетей. В. Г. Головацкий, И. В. Пономарёв.

[4] Терминал выпускается научно-производственным предприятием «Электро-Универсал»

[5] Справочник по проектированию электрических сетей. Под. Редакцией Д. Л. Файбисовича.

[6] См. пункт 8.1, стр. 18.


Информация о работе «Расчёт и выбор микропроцессорных блоков защитной автоматики»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 23533
Количество таблиц: 6
Количество изображений: 8

Похожие работы

Скачать
135394
6
5

... наружными полиэтиленовыми оболочками или покровами по условиям пожарной безопасности запрещается. Прокладка кабеля должна соответствовать требованиям, изложенным в Правилах производства работ по устройству автоматики и телемеханики на железнодорожном транспорте, ВСН 129/1 – 80. О результатах осмотра трассы подземных кабелей и кабельных желобов электромеханик записывает в Журнал формы ШУ – 2. ...

Скачать
108487
24
5

... питающей сети. 6.  Автоматизированная система управления технологическим процессом 6.1 Назначение и цели создания АСУ ТП Автоматизированная система управления технологическим процессом блока УФ обеззараживания очищенных сточных вод на ЛОС предназначена для централизованного эффективного управления технологическими процессами, оборудованием, их непрерывного контроля, а также для обеспечения ...

Скачать
173046
41
10

... меры к его понижению (забивка дополнительных электродов и т.д.). Глава 7. РАСЧЁТ ПОКАЗАТЕЛЕЙ ЭКОНОМИЧСЕКОЙ ЭФФЕКТИВНОСТИ ПРОЕКТА В данной главе рассмотрим вопросы капиталовложений при реконструкции подстанции, расчет эксплуатационных затрат при проведении текущих ремонтов и технических обслуживаний, определение затрат на потреблённую электроэнергию, расчет экономических показателей при ...

Скачать
163416
8
26

... задаются в поле задания уставок. 6. Безопасность и экологичность проекта В основной части дипломного проекта рассмотрены вопросы, связанные с модернизацией релейной защиты РУ-27,5 кВ тяговой подстанции Заудинск ВСЖД. Наличие на подстанции высоковольтного оборудования и значительных по величине токов определяет выбор темы, и содержание раздела "Безопасность и экологичность проекта", связанных ...

0 комментариев


Наверх