Задача 1

Пусть имеется следующая модель регрессии, характеризующая зависимость x от y:

.

Известно также, что, .

Задание

1.  Постройте доверительный интервал для коэффициента регрессии в этой модели:

a.  с вероятностью 90%;

b.  с вероятностью 99%.

2.  Проанализируйте результаты, полученные в п.1, и поясните причины их различий.

Решение.

Формула для расчета доверительного интервала для коэффициента регрессии имеет вид:

где - случайная ошибка параметра линейной регрессии. Оценка значимости коэффициента регрессии проводится путем сопоставления его значения с величиной случайной ошибки.

где F – F-критерий Фишера и определяется из соотношения:

Тогда

При  и числа степеней свободы  табличное значение .

Сравнив его с расчетными значениями, получаем, что , из чего следует, что гипотезу о несущественности параметра b с вероятностью 90% (p = 1 – α) следует отклонить

Для коэффициента регрессии в примере 90 %-ые границы составят:

-7 + 1,7143 · (-2,86) ≤ b ≤ -7 - 1,7143 · (-2,86)

-11,9 ≤ b ≤ -2,04

При  и числа степеней свободы  табличное значение .

Сравнив его с расчетными значениями, получаем, что , из чего следует, что гипотезу о несущественности параметра b с вероятностью 99% (p = 1 – α) следует принять и признается статистическая незначимость параметра b.

Для коэффициента регрессии в примере 99 %-ые границы составят:

-7 + 2,8784 · (-2,86) ≤ b ≤ -7 – 2,8784 · (-2,86)

-15,23 ≤ b ≤ 1,232


Получили, что доверительный интервал для коэффициента корреляции с вероятностью 90% значительно меньше доверительного интервала с вероятностью 99%. Это объясняется тем, что при увеличении интервала вероятность попадания в него оцениваемого параметра растет и наоборот, с уменьшением интервала – вероятность снижается.

Производительность труда рабочих, тыс.руб., y

фактическая, y

расчетная,

1 12 10 0,167 4 0,16
2 8 10 0,250 4 12,96
3 13 13 0,000 0 1,96
4 15 14 0,067 1 11,56
5 16 15 0,063 1 19,36
6 11 12 0,091 1 0,36
7 12 13 0,083 1 0,16
8 9 10 0,111 1 6,76
9 11 10 0,091 1 0,36
10 9 9 0 0 6,76
Итого: - - 0,922 14 60,40
Ср. значение 11,6 - - - -

Задача 2

Зависимость среднемесячной производительности труда от возраста рабочих характеризуется моделью . Ее использование привело к результатам, представленным в таблице:

Производительность труда рабочих, тыс.руб., y
фактическая расчетная
1 12 10
2 8 10
3 13 13
4 15 14
5 16 15
6 11 12
7 12 13
8 9 10
9 11 10
10 9 9

Задание

Оцените качество модели, определив ошибку аппроксимации, индекс корреляции и F-критерий Фишера.

Решение

Значение средней ошибки аппроксимации находится по формуле:

Рассчитанное значение средней ошибки аппроксимации говорит о предельном качестве модели, поскольку близко подходит к критическому пределу в 10%.

Индекс корреляции (для нелинейной регрессии):

Найденное значение индекса корреляции говорит о наличии близкой зависимости среднемесячной производительности труда от возраста рабочих.

F-критерий Фишера:


.

 

При уровне значимости α = 0,05, k1 = 1 (m) и k2 = 10 (n-m-1=10-1-1) степенях свободы табличное значение F-критерия Фишера .

=26,5 > =5,12, значит, H0 – гипотеза о случайной природе оцениваемых характеристик откланяется и признается их статистическая значимость и надёжность. Вывод: показатели рассчитанных коэффициентов позволяют предложить отобразить зависимость среднемесячной производительности труда от возраста рабочих выбором более точной модели путем введения дополнительных переменных, либо изменением уравнения регрессии.

Задача 3

регрессия аппроксимация корреляция спрос

Зависимость спроса на товар K от его цены характеризуется по 20 наблюдениям уравнением: . Доля остаточной дисперсии в общей составила 18%.

Задание

1.  Запишите данное уравнение в виде степенной функции.

2.  Оцените эластичность спроса на товар в зависимости от его цены.

3.  Определите индекс корреляции.

4.  Оцените значимость уравнения регрессии через F-критерий Фишера. Сделайте выводы.

Решение.

1.  Уравнение в виде степенной функции:

2.  Эластичность степенной функции:

Фактором снижения спроса выступает его цена: с ростом цены на 1%, спрос снижается на 0,35%.

3.  Индекс корреляции (для нелинейной регрессии):

Поскольку доля остаточной дисперсии в общей составила 18%, поэтому уравнение регрессии объясняется 82% дисперсии результативного признака, т. е. коэффициент детерминации равен R2 = 0,82.

Индекс корреляции находится:  Величина индекса корреляции достаточно близка к 1 и означает наличие достаточно тесной связи объема спроса от размера цены.

F –тест состоит в проверке гипотезы H0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого сравнивается фактическое и критическое значение F-критерия Фишера. При уровне значимости α = 0,05, k1 = 1 (m) и k2 = 20 (n-m-1=20-1-1) степенях свободы табличное значение F-критерия Фишера :

.

> ,

то H0 – гипотеза о случайной природе оцениваемых характеристик откланяется и признается их статистическая значимость и надёжность.

Вывод: уравнение регрессии характеризует достаточно тесную зависимость спроса на товар K от его цены. Причем, наблюдается обратная зависимость: с увеличением цены, спрос падает.


Задача 4

Изучение влияния стоимости основных и оборотных средств на величину валового дохода торговых предприятий. Для этого по 12 торговым предприятиям были получены данные, приведенные в таблице:

Номер предприятия Валовой доход за год, млн.руб. Среднегодовая стоимость, млн.руб.
основных фондов оборотных средств
1 203 118 105
2 63 28 56
3 45 17 54
4 113 50 63
5 121 56 28
6 88 102 50
7 110 116 54
8 56 124 42
9 80 114 36
10 237 154 106
11 160 115 88
12 75 98 46

Задание

1.  Постройте линейное уравнение множественной регрессии и поясните экономический смысл его параметров. Оцените статистическую значимость параметров регрессионной модели с помощью t-критерия.

2.  Рассчитайте средние коэффициенты эластичности.

3.  Определите парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделайте выводы о силе связи результата и факторов.

4.  Дайте оценку полученного уравнения на основе общего F-критерия Фишера.

5.  Оцените качество уравнения через среднюю ошибку аппроксимации.

6.  Рассчитайте прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.

7.  Оцените полученные результаты, выводы оформите в аналитической записке.

Решение.

Построение линейной множественной регрессии сводится к оценке ее параметров – а, b1 и b2.  Для расчета параметров а, b1 и b2 уравнения регрессии  решаем систему нормальных уравнений относительно а, b1 и b2:

По исходным данным произведем расчет предварительных параметров (табл. 4.1)

Таблица 4.1

У

Х1

Х2

Х12

Х22

Х1·Х2

У·Х1

У·Х2

ŷ
1 203 118 105 13924,00 11025,00 12390,00 23954,00 21315,00 197,29
2 63 28 56 784,00 3136,00 1568,00 1764,00 3528,00 80,63
3 45 17 54 289,00 2916,00 918,00 765,00 2430,00 73,07
4 113 50 63 2500,00 3969,00 3150,00 5650,00 7119,00 100,80
5 121 56 28 3136,00 784,00 1568,00 6776,00 3388,00 44,39
6 88 102 50 10404,00 2500,00 5100,00 8976,00 4400,00 98,90
7 110 116 54 13456,00 2916,00 6264,00 12760,00 5940,00 110,97
8 56 124 42 15376,00 1764,00 5208,00 6944,00 2352,00 93,91
9 80 114 36 12996,00 1296,00 4104,00 9120,00 2880,00 80,01
10 237 154 106 23716,00 11236,00 16324,00 36498,00 25122,00 212,75
11 160 115 88 13225,00 7744,00 10120,00 18400,00 14080,00 167,62
12 75 98 46 9604,00 2116,00 4508,00 7350,00 3450,00 90,66
Итого: 1351,00 1092,0 728,0 119410,0 51402,0 71222,0 138957,0 96004,0 1351,00

Систему линейных уравнений удобно решать методом Крамера (метод определителей):

- частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

частный определитель параметра а.


частный определитель параметра х1.

частный определитель параметра х2.

Теперь произведем расчет коэффициентов множественной регрессии:

Аналогичные результаты можно получить с помощью автоматической процедуры нахождения параметров «Анализ данных» → «Регрессия» MS Excel уравнения множественной регрессии:

 Окончательно уравнение множественной регрессии, связывающее валовой доход за год (у) со средней стоимостью основных фондов (х1) и со средней стоимостью оборотных средств (х2) имеет вид:


Анализ данного уравнения позволяет сделать выводы – с увеличением среднегодовой стоимости основных фондов на 1 млн. руб. размер валового дохода возрастет в среднем на 380 тыс. руб., при том же стоимости оборотных средств. Увеличение среднегодовой стоимости оборотных средств на 1 млн. руб. при той же стоимости основных фондов предполагает дополнительное увеличение валового дохода за год на 1,68 млн. руб.

Для оценки статистической значимости коэффициентов регрессии рассчитываются t-критерий Стьюдента и доверительные интервалы для каждого из них. Выдвигается гипотеза H0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки по формулам:

 и .

Где случайные ошибки параметров линейной регрессии определяются следующим образом:

;

средняя квадратическая ошибка i-го коэффициента регрессии (стандартная ошибка i-го коэффициента регрессии);

среднеквадратичное отклонение величины у;

среднеквадратичное отклонение величины х1;

среднеквадратичное отклонение величины х2;

совокупный коэффициент множественной корреляции;

определитель матрицы парных коэффициентов корреляции;

определитель матрицы межфакторной корреляции. Как видно, величина множественного коэффициента корреляции зависит не только от корреляции результата с каждым их факторов, но и от межфакторной корреляции. Парный коэффициент корреляции между у и х1 рассчитывается по формуле:


Произведем расчет необходимых параметров в таблице 4.2

Таблица 4.2

У

Х1

1 203,0 118,0 90,4 27,0 2441,25 8175,17 729,00
2 63,0 28,0 -49,6 -63,0 3123,75 2458,51 3969,00
3 45,0 17,0 -67,6 -74,0 5001,17 4567,51 5476,00
4 113,0 50,0 0,4 -41,0 -17,08 0,17 1681,00
5 121,0 56,0 8,4 -35,0 -294,58 70,84 1225,00
6 88,0 102,0 -24,6 11,0 -270,42 604,34 121,00
7 110,0 116,0 -2,6 25,0 -64,58 6,67 625,00
8 56,0 124,0 -56,6 33,0 -1867,25 3201,67 1089,00
9 80,0 114,0 -32,6 23,0 -749,42 1061,67 529,00
10 237,0 154,0 124,4 63,0 7838,25 15479,51 3969,00
11 160,0 115,0 47,4 24,0 1138,00 2248,34 576,00
12 75,0 98,0 -37,6 7,0 -263,08 1412,51 49,00
Итого 1351,00 1092,00 16016,00 39286,92 20038,00
Среднее значение 112,6 91,0

Тогда коэффициент корреляции между у и х1 составит:

Парный коэффициент корреляции между у и х2 рассчитывается по формуле:


Произведем расчет необходимых параметров в таблице 4.3

Таблица 4.3

У

Х2

1 203,0 105,0 90,4 44,3 4008,47 8175,17 1965,44
2 63,0 56,0 -49,6 -4,7 231,39 2458,51 21,78
3 45,0 54,0 -67,6 -6,7 450,56 4567,51 44,44
4 113,0 63,0 0,4 2,3 0,97 0,17 5,44
5 121,0 28,0 8,4 -32,7 -274,94 70,84 1067,11
6 88,0 50,0 -24,6 -10,7 262,22 604,34 113,78
7 110,0 54,0 -2,6 -6,7 17,22 6,67 44,44
8 56,0 42,0 -56,6 -18,7 1056,22 3201,67 348,44
9 80,0 36,0 -32,6 -24,7 803,72 1061,67 608,44
10 237,0 106,0 124,4 45,3 5640,22 15479,51 2055,11
11 160,0 88,0 47,4 27,3 1296,06 2248,34 747,11
12 75,0 46,0 -37,6 -14,7 551,22 1412,51 215,11
Итого 1351,00 728,00 14043,33 39286,92 7236,67
Среднее значение 112,6 60,7

Тогда коэффициент корреляции между у и х2 составит:

Парный коэффициент корреляции между х1 и х2 рассчитывается по формуле:

Произведем расчет необходимых параметров в таблице 4.4


Таблица 4.4

х1

х2

1 118,0 105,0 27,0 44,3 1197,00 729,00 1965,44
2 28,0 56,0 -63,0 -4,7 294,00 3969,00 21,78
3 17,0 54,0 -74,0 -6,7 493,33 5476,00 44,44
4 50,0 63,0 -41,0 2,3 -95,67 1681,00 5,44
5 56,0 28,0 -35,0 -32,7 1143,33 1225,00 1067,11
6 102,0 50,0 11,0 -10,7 -117,33 121,00 113,78
7 116,0 54,0 25,0 -6,7 -166,67 625,00 44,44
8 124,0 42,0 33,0 -18,7 -616,00 1089,00 348,44
9 114,0 36,0 23,0 -24,7 -567,33 529,00 608,44
10 154,0 106,0 63,0 45,3 2856,00 3969,00 2055,11
11 115,0 88,0 24,0 27,3 656,00 576,00 747,11
12 98,0 46,0 7,0 -14,7 -102,67 49,00 215,11
Итого 1092,00 728,00 4974,00 20038,00 7236,67
Средне значение 91,0 60,7

Тогда коэффициент корреляции между х1 и х2 составит:

При трех переменных для двухфакторного уравнения регрессии рассчитаем определители матрицы парной корреляции и межфакторной корреляции:

;

Тогда совокупный коэффициент множественной корреляции составит:


По данным из табл. 2, 3 рассчитаем теперь среднее квадратическое отклонение величин у, х1 и х2 по формулам:

Рассчитаем теперь средние квадратические ошибки коэффициентов регрессии b1 и b2

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значений:

При уровне значимости α = 0,05, df = 11 (n-m-1=12-2-1) степенях свободы табличное значение t-критерия Стьюдента 2,26.

Сравнив его с расчетными значениями, получаем, что , из чего следует, что гипотезу о несущественности параметра b2 с вероятностью 95% (p = 1 – α) следует отклонить. А вот  из чего следует, что гипотезу о несущественности параметра b1 с вероятностью 95% (p = 1 – α) следует принять и признается статистическая незначимость параметра b1.

2. Для характеристики относительной силы влияния х1 и х2 на у используя коэффициенты регрессии можно рассчитать средние коэффициенты эластичности. Как правило, их рассчитывают для средних значений факторов и результатов.

С увеличением среднегодовой стоимости основных фондов (х1) на 1% от его среднего уровня, средний объем валового дохода за год увеличится на 0,37% от своего среднего уровня; при повышении среднегодовой стоимости оборотных средств на 1% - увеличится на 0,53% от своего среднего уровня. Очевидно, что сила влияния средней стоимости оборотных средств (х2) на валовой доход (у) оказалась сильнее, чем сила влияния средней стоимости основных фондов (х1).

Рассчитаем линейные коэффициенты частной корреляции


Расчёт линейного коэффициента множественной корреляции и коэффициентов парной корреляции выполнен в п.1 Коэффициент множественной детерминации рассчитывается как квадрат коэффициента множественной корреляции:

 Зависимость у от х1 и х2 характеризуется как тесная, в которой 76% вариации валового дохода определяются вариацией учтенных в модели факторов: среднегодовой стоимости основных фондов и среднегодовой стоимости оборотных средств. Прочие факторы, не включенные в модель, составляют соответственно 14% от общей вариации у.

4. F –тест Фишера состоит в проверке гипотезы H0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого сравнивается фактическое и критическое значение F-критерия Фишера. При уровне значимости α = 0,05, k1 = 2 (m) и k2 = 9 (n-m-1=12-2-1) степенях свободы табличное значение F-критерия Фишера:

Таблица 4.5

у ŷ

1 203 197,29 7174,61 32,65
2 63 80,63 1020,85 310,91
3 45 73,07 1561,63 787,69
4 113 100,80 138,89 148,88
5 121 44,39 4650,78 5869,60
6 88 98,90 187,15 118,88
7 110 110,97 2,59 0,95
8 56 93,91 348,78 1437,00
9 80 80,01 1060,74 0,00
10 237 212,75 10033,02 588,14
11 160 167,62 3029,24 58,09
12 75 90,66 480,55 245,29
Сумма 1351,00 29688,8 9598,1

Тогда

> , значит, H0 – гипотеза о случайной природе оцениваемых характеристик откланяется и признается их статистическая значимость и надёжность.

Значение средней ошибки аппроксимации найдем по формуле:

Таблица.4.6 Расчет ошибки аппроксимации

у ŷ

1 203,0 197,29 0,03
2 63,0 80,63 0,28
3 45,0 73,07 0,62
4 113,0 100,80 0,11
5 121,0 44,39 0,63
6 88,0 98,90 0,12
7 110,0 110,97 0,01
8 56,0 93,91 0,68
9 80,0 80,01 0,00
10 237,0 212,75 0,10
11 160,0 167,62 0,05
12 75,0 90,66 0,21
13 1351,0 1351,0 2,8
14 203,0 197,29 0,03
Сумма 63,0 80,63 0,28


Ошибка аппроксимации показала очень сильное отличие фактического значения результативного признака от теоретического, рассчитанного по множественному уравнению регрессии, что свидетельствует о плохом выборе уравнения регрессии.

Рассчитаем прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.

Задача 5

Имеются данные об объемах продаж в перерабатывающей промышленности и торговле США в течение 5 лет в сопоставимых ценах в млрд. долл.

Месяц 1 год 2 год 3 год 4 год 5 год
Январь 472,5 477,9 510,9 541,0 578,2
Февраль 482,1 467,5 484,7 512,3 539,4
Март 489,5 470,9 486,6 512,6 545,3
Апрель 493,6 469,1 488,4 511,5 551,9
Май 488,0 478,1 489,5 511,9 549,7
Июнь 490,6 480,6 486,6 513,9 550,1
Июль 492,5 479,3 491,8 520,0 554,0
Август 488,1 484,2 495,2 515,9 550,0
Сентябрь 493,1 484,9 491,8 524,2 565,6
Октябрь 484,5 485,6 496,1 527,1 564,7
Ноябрь 483,0 486,1 498,8 529,8 566,9
Декабрь 476,9 484,7 501,5 534,9 572,7

Задание

Рассчитайте трендовую и сезонную компоненты. Постройте мультипликативную модель этого ряда. Найдите наиболее целесообразный вариант построения уравнения авторегрессии через расчет коэффициентов автокорреляции первого, второго и третьего порядка. Охарактеризуйте структуру этого ряда.

Решение


Информация о работе «Экономическое моделирование»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 27640
Количество таблиц: 12
Количество изображений: 12

Похожие работы

Скачать
11558
10
2

... в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития. Таким образом, мы рассмотрели сущность моделирования. Метод экономического моделирования, это одна из подгрупп метода прогнозирования. Особенность его применения в прогнозировании заключается в следующем: основа метода – сетевой график, имеющий много ...

Скачать
23293
0
1

... настоящее время можно сказать, что человечество обладает глубоким пониманием методологии применения математики в естественных науках. И хотя в экономике имеются определенные аналогии с физическими процессами, экономическое моделирование намного сложнее. Это объясняется в первую очередь тем, что экономика охватывает не только производственные процессы, но и производственные отношения. Моделирование ...

Скачать
147108
2
8

... же социально-экономической системе. Множественные равновесия являются естественным явлением в равновесных экономических моделях и моделях экономических игр. Тем не менее ввиду автономности моделей коррупции как направления социально-экономического моделирования, изучение таких наблюдаемых на практике явлений требует специального объяснения. Актуальность этого направ­ления определяется тем, что в ...

Скачать
220567
1
2

... рынке труда и от традиций страны, его менталитета. Только в этом случае можно улучшить ситуацию в сфере занятости. Глава II. Формирование социально-экономической модели занятости в условиях переходной экономики Республики Казахстан Слабо регулируемое вхождение национальной экономики в рынок деформирует ход всех социально-эконоических процессов в республике, и ...

0 комментариев


Наверх