3.2 Химические процессы в тропосфере
Тропосферы достигает УФ излучение достаточно низкой энергии с λ>300 нм, поскольку более коротковолновые практически полностью поглощаются в более высших слоях в процессах фотодиссоциации О2 и О3.
УФ-излучение низкой энергии не вызывает фотохимических реакций основных компонентов, т.е. О2 и N2. Реакции с участием основных компонентов могут протекать например при газовых разрядах
И затем доокисляя
Но в фотохимических реакциях в тропосфере участвуют ряд примесей, средняя концентрация которых в атмосфере мала, но локальная может быть значительной в результате активной хозяйственной деятельности – это прежде всего NOx, у/в, озон.
В тропосфере образуется и накапливается сильный окислитель озон, но по механизму, отличающемуся от стратосферного, где к образованию озона приводит атом О(3р), образующийся при фотодиссоциации О2.
Озон в тропосфере образуется в фотолитическом цикле диоксида азота.
NO2 поступает в атмосферу в значительных количествах от стационарных и передвижных источников, сжигающих органическое топливо непосредственно при сжигании образуется NOx, который постепенно доокисляется до NO2 []
NO2 легко диссоциирует под действием УФ-излучения с λ<380 нм
(1)
– это одна из наиболее важных фотохиических реакций в тропосфере, приводящая к образованию активного атома О
Далее по известной реакции образуется озон:
(2)
Затем озон окисляет NO в NO2 и цикл замыкается
(3)
NO2 может выводится из цикла по разным реакциям, например, окисляясь в азотную кислоту в капельной фазе атмосферной влаги
Либо гидролизуясь в газовой фазе:
- это реакция равновесная
Три реакции (1-3) фотолитического цикла NO2 протекают очень быстро и их комбинация должна определять некоторый постоянный уровень концентрации озона в нижних слоях атмосферы.
Однако измерения показывают, что фактическая концентрация О3 в атмосфере городов могут примерно на порядок превышать те, что следуют из фотолитичского цикла NO2, т.е. очевидно есть еще какой то альтернативный механизм окисления NO в NO2.
3.2.1 Роль углеводородов в тропосферных фотохимических процессах
В атмосферу поступают разнообразные по строению и молекулярной массе углеводороды. Прежде всего это СН4, выделяющийся в естественных процессах (микробиологическая активность в почвах, и антропогенного происхождения. С продуктами сгорания топлив в ДВС, стационарных установках в атмосферу выбрасывается большой набор разных по строению веществ – алканы, алкены, ароматические углеводороды.
У/в в атмосфере окисляются активными компонентами – атомарным О, О3 и гидроксильным радикалом, который играет исключительно важную роль в химических превращениях загрязняющих веществ в тропосфере.
Окисление у/в протекает по радикальному механизму через образование на одной из стадий пероксидного радикала способного окислять NO:
(алкоксильный радикал)
Эта реакция ускоряет образование NO2 и включение его в фотолитический цикл. При этом скорость данной реакции значительно больше, чем скорость реакции, в которой расходуется окислитель озон ()
Это и приводит к накоплению озона.
Окислители у/в – атомарный О и О3 образуются в рассмотренном фотолитическом цикле NO2 . Атомарный О в основном участвует в образовании озона, но частично может расходоваться на реакции с у/в
Гидроксильный радикал образуется:
1) главным образом по реакции с Н2О атомарного О(1Д), выделяющегося при фотолизе озона (в основном эта реакция идет в верхних слоях тропосферы, куда проникает излучение с λ<300 нм)
2) дополнительное количество ОН радикала в тропосфере дает реакция О3 с НО2, который образуется по нескольким реакциям (о них ниже)
3) и кроме того ОН радикалы, хотя и начинают процесс окисления у/в, т.е. в начале расходуются, но в этих же процессах и накапливаются в условиях загрязненной антропогенными выбросами атмосферы
ОН-радикал наиболее важный окислитель в тропосфере, он начинает большинство многостадийных процессов окисления у/в и других примесей.
Окисление метана и его гомологов
Окисление метана инициируется ОН-радикалом. В последующем в процесс включается молекулярный О2. Сопряжено с окислением СН4 идет окисление NO (т.е. NO включается в цепочку реакций на одной из стадий)
Начальная стадия
Взаимодействие алкильного (метильного) радикала с О2 дает пероксильный радикал:
,
который как отмечалось определяет альтернативный механизм окисления NO в NO2 (вместо окислителя О3)
Т.е.
Взаимодействие радикала с О2 приводит к образованию формальдегида и гидропероксидного радикала
Образующийся NO2 включается в фотолитический цикл
Что приводит к образованию озона
Гидропероксидный радикал окисляет NO ( как и )
,
генерируя ОН радикал
Таким образом процесс окисления СН4 (и углеводородов вообще) – совокупность реакций, инициируемых солнечным излучение с λ=300-400 нм (которые приводят к О, ОН, НО2), протекающий при участии NO и приводящий к накоплению окислителей О3,ОН
Окисление у/в в этом процесс сопровождается также вторичным загрязнением атмосферы оксидом углерода, которые образуется при превращении СН2О (что по масштабности сопоставимо с выбросами СО при сжигании топлива)
Окисление
НО2 также дает другая реакции
Формальную схему суммарной реакции окисления СН4 можно записать в виде
Таким образом в воздухе накапливается озон и гидроксорадикал, Причем скорость образования О3 зависит от содержания в атмосфере NO – она тем больше чем выше концентрация NO
Озон в тропосфере уже выполняет не защитную функцию как в стратосфере, а губительную вследствие сильных губительных свойств.
По подобной схеме окисляются и другие у/в алканового ряда. При этом скорость взаимодействия у/в с ОН радикалом сильно зависит от строения молекулы алкана (от стабильности образующегося у/в радикала) Очевидно скорость (как стабильность R•) возрастает с увеличением длины цепи и разветвленности алкана, Поэтому например скорость взаимодействия бутана с ОН радикалом на 3 порядка выше,чем с СН4 (к скорости соответственно 2,6·10-12 и 8·10-15).
При окислительных превращениях гомологов метана возможен еще один очень важный путь развития процесса, связанный с реакцией карбонильного радикала с О2
В случае с метаном простейший карбонильный радикал - , образовавшийся из формальдегида, приводит к СО (по рассматриваемым реакциям)
В случае с другими углеводородами карбонильный радикал (со структурой, определяемой структурой исходного углеводорода) присоединяет О2
Давая ацилпероксидный радикал, который в конечном итоге приводит к образованию важнейших (с точки зрения воздействия на ОС) продуктов веществ группы ПАН – пероксиацилнитратов.
ПАН- вещества общей формулы (R – углеводородный радикал) являются наиболее опасными компонентами фотохимического смога. Из них наиболее известен пероксиацетил нитрат, т.е.
Таким образом фотохимические и окислительные превращения углеводородов с участие NОx являются главной причиной образования фотохимического смога – смеси газообразных веществ в сильными окислительными свойствами.
Образование фотохимического смога – обычное явление для крупных городов в большим количество автотранспорта. Выхлопные газы ДВС содержат в сове составе NОx и у/в, которые распространяются в фактически в зоне дыхания.
Обобщим все что говорилось об окислении у/в в единую схему, которой принято описывать образование фотохимического смога
Реакционноспособоные у/в (с двойными связями) также легко окисляются озоном, образуя при это альдегид (либо кетон – в зависимости от строения алкена) и кислоту – продукт последующего окисления по общей схеме:
Значительную долю у/в в атмосфере составляют ароматические у/в (в городах 30-40% от всех органических соединений). Они окисляются гидроскорадикалом по различны механизмам. Основным направление окисление является раскрытие цикла
C образованием перокидного радикала, который окисляется О2 с участием NO через ряд промежуточных стадий, включающих внутримолекулярную циклизацию пероксидного радикала) с раскрытием цикла с образованием дикарбонильных соединений.
Гомологи бензола дают большое число различных продуктов. Например при окислении толуола зарегистрировано более 40 (47) соединений, половина из которых диальдегиды и альдегиды дикарбонильных соединений легко фотохимически разлагаются с образованием различных радикалов.
Таким образом, фотохимический смог – смесь разнообразных продуктов фотохимических и окислительных реакций озона, альдегидов, кислот, пероксидных соединений, свободных радикалов, ПАН, главным из которых является окислители – озон и вещества группы ПАН. ПАН отличаются высокой токсичностью для человека, а также подавляют процесс фотосинтеза. Кроме того компоненты фотохимического смога будучи сильными окислителями, оказывают разрушительное действие на конструкционные материалы – усиливают коррозию металлических конструкций, разрушение строительных соединений.
Вредное воздействие смога на живые организмы обусловлено также присутствием альдегидов – весьма токсичных веществ.
Интересно проследить за изменением концентрации основных компонентов, участвующих в образовании фотохимического смога (например для города с активными физико-химическими условиями) в течение суток
График 3.1. изменение концентраций компонентов смога в городе в течение суток
Как видно из графиков – содержание NO достигает максимум быстрее по мере увеличения интенсивности движения транспорта, чем содержание NO2 (со смещением в несколько часов).
Концентрация окислителей достигает максимума только после нескольких часов воздействия солнечного света.
Образование фотохимического смога – один из процессов, в котором участвуют гидроксильные радикалы, окисляя у/в.
... . Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификации веществ, которые не могут быть опознаны с помощью какого- либо одного метода.[11-12] Глава 3. Примеры применения хроматографии в анализе объектов окружающей среды Анализ состояния водной среды с помощью метода газовой хроматографии[13-15] Метод газовой хроматографии для анализа ...
... тому назад, возможности эффективности применения в радиобиологии ингибиторов радикальных процессов ещё далеко не исчерпаны. ГЕРОНТОЛОГИЯ Полвека назад сформировалась химическая физика – новая область естествознания, пограничная между физикой и химией. В этой области современная теоретическая и экспериментальная физика нашла огромное многообразие объектов исследования, а химия получила ...
... пластмасс различного назначения. Приводимый ниже материал предназначен для студентов химического отделения, специализирующихся по органической химии и химии и физике высокомолекулярных соединений, а также может быть полезен аспирантам, инженерам и научным работникам. 2.1 Метод изучения релаксации напряжения Явление релаксации - это процесс перехода из неравновесного в равновесное состояние ...
... из этого можно заключить, что факт наличия коллоидных выделений в синей соли и их размеры, полученные методом оптической спектроскопии, подтверждены прямым наблюдением поверхности сколов в атомно-силовом микроскопе. Таким образом в результате изучения оптического поглощения галитов можно сделать следующие выводы. В бесцветных образцах какие-либо центры окраски отсутствуют. В синих окрашенных ...
0 комментариев